Abstract
Human intelligence gradually accepts new information and accumulates knowledge throughout the lifespan. However, deep learning models suffer from a catastrophic forgetting phenomenon, where they forget previous knowledge when acquiring new information. Class-Incremental Learning aims to create an integrated model that balances plasticity and stability to overcome this challenge. In this paper, we propose a selective regularization method that accepts new knowledge while maintaining previous knowledge. We first introduce an asymmetric feature distillation method for old and new classes inspired by cognitive science, using the gradient of classification and knowledge distillation losses to determine whether to perform pattern completion or pattern separation. We also propose a method to selectively interpolate the weight of the previous model for a balance between stability and plasticity, and we adjust whether to transfer through model confidence to ensure the performance of the previous class and enable exploratory learning. We validate the effectiveness of the proposed method, which surpasses the performance of existing methods through extensive experimental protocols using CIFAR-100, ImageNet-Subset, and ImageNet-Full.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory aware synapses: Learning what (not) to forget. In: Proceedings of the European conference on computer vision (ECCV). pp. 139–154 (2018)
Ashok, A., Joseph, K., Balasubramanian, V.N.: Class-incremental learning with cross-space clustering and controlled transfer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII. pp. 105–122. Springer (2022)
Castro, F.M., Marin-Jimenez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end incremental learning. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 233–248 (2018), https://arxiv.org/abs/1807.09536
Cha, S., Hsu, H., Hwang, T., Calmon, F.P., Moon, T.: Cpr: classifier-projection regularization for continual learning (2021)
Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.: Riemannian walk for incremental learning: Understanding forgetting and intransigence. In: ECCV (2018), https://arxiv.org/abs/1801.10112
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. pp. 248–255. Ieee (2009)
Douillard, A., Cord, M., Ollion, C., Robert, T., Valle, E.: Podnet: Pooled outputs distillation for small-tasks incremental learning. In: Proceedings of the IEEE European Conference on Computer Vision (ECCV) (2020), https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123650086.pdf
Du, Y., Czarnecki, W.M., Jayakumar, S.M., Farajtabar, M., Pascanu, R., Lakshminarayanan, B.: Adapting auxiliary losses using gradient similarity. arXiv preprint arXiv:1812.02224 (2018)
Eeckt, S.V., et al.: Weight averaging: A simple yet effective method to overcome catastrophic forgetting in automatic speech recognition. ICASSP (2023)
Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y.: An empirical investigation of catastrophic forgetting in gradient-based neural networks. ArXiv e-prints (dec 2013), https://arxiv.org/abs/1312.6211
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778 (2016)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)
Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incrementally via rebalancing. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2019)
Hu, X., Tang, K., Miao, C., Hua, X.S., Zhang, H.: Distilling causal effect of data in class-incremental learning. In: Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition. pp. 3957–3966 (2021)
Hung, C.Y., Tu, C.H., Wu, C.E., Chen, C.H., Chan, Y.M., Chen, C.S.: Compacting, picking and growing for unforgetting continual learning. In: Advances in Neural Information Processing Systems. pp. 13647–13657 (2019), https://arxiv.org/abs/1910.06562
Izmailov, P., Wilson, A., Podoprikhin, D., Vetrov, D., Garipov, T.: Averaging weights leads to wider optima and better generalization. In: 34th Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018. pp. 876–885 (2018)
Kang, M., Park, J., Han, B.: Class-incremental learning by knowledge distillation with adaptive feature consolidation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 16071–16080 (2022)
Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al.: Overcoming catastrophic forgetting in neural networks. Proc. of the national academy of sciences (2017)
Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)
Li, Z., Hoiem, D.: Learning without forgetting. IEEE Transactions on Pattern Analysis and Machine Intelligence (2017), https://arxiv.org/abs/1606.09282
Liu, Y., Schiele, B., Sun, Q.: Adaptive aggregation networks for class-incremental learning. In: Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition. pp. 2544–2553 (2021)
Liu, Y., Schiele, B., Sun, Q.: Rmm: Reinforced memory management for class-incremental learning. Adv. Neural. Inf. Process. Syst. 34, 3478–3490 (2021)
Liu, Y., Su, Y., Liu, A.A., Schiele, B., Sun, Q.: Mnemonics training: Multi-class incremental learning without forgetting. In: Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition. pp. 12245–12254 (2020)
Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008)
McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: The sequential learning problem. In: Psychology of learning and motivation, vol. 24, pp. 109–165. Elsevier (1989)
Mermillod, M., Bugaiska, A., Bonin, P.: The stability-plasticity dilemma: Investigating the continuum from catastrophic forgetting to age-limited learning effects (2013)
Movshovitz-Attias, Y., Toshev, A., Leung, T.K., Ioffe, S., Singh, S.: No fuss distance metric learning using proxies. In: Proceedings of the IEEE international conference on computer vision. pp. 360–368 (2017)
O’Reilly, R.C., McClelland, J.L.: Hippocampal conjunctive encoding, storage, and recall: Avoiding a trade-off. Hippocampus 4(6), 661–682 (1994)
Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from natural language supervision. In: International conference on machine learning. pp. 8748–8763. PMLR (2021)
Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: icarl: Incremental classifier and representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2001–2010 (2017), https://arxiv.org/abs/1611.07725
Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., Hadsell, R.: Progressive neural networks. ArXiv e-prints (jun 2016), https://arxiv.org/abs/1606.04671
Santoro, A.: Reassessing pattern separation in the dentate gyrus (2013)
Shaheen, K., Hanif, M.A., Hasan, O., Shafique, M.: Continual learning for real-world autonomous systems: Algorithms, challenges and frameworks. Journal of Intelligent & Robotic Systems 105(1), 9 (2022)
Simon, C., Koniusz, P., Harandi, M.: On learning the geodesic path for incremental learning. In: Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition. pp. 1591–1600 (2021)
Stojanovski, Z., Roth, K., Akata, Z.: Momentum-based weight interpolation of strong zero-shot models for continual learning. In: NeurIPS 2022 Workshop on Distribution Shifts: Connecting Methods and Applications (2022)
Verbeke, P., Verguts, T.: Learning to synchronize: How biological agents can couple neural task modules for dealing with the stability-plasticity dilemma. PLoS Comput. Biol. 15(8), e1006604 (2019)
Wortsman, M., Ilharco, G., Gadre, S.Y., Roelofs, R., Gontijo-Lopes, R., Morcos, A.S., Namkoong, H., Farhadi, A., Carmon, Y., Kornblith, S., et al.: Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time. In: International Conference on Machine Learning. pp. 23965–23998. PMLR (2022)
Wortsman, M., Ilharco, G., Kim, J.W., Li, M., Kornblith, S., Roelofs, R., Lopes, R.G., Hajishirzi, H., Farhadi, A., Namkoong, H., et al.: Robust fine-tuning of zero-shot models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7959–7971 (2022)
Wu, Y., Chen, Y., Wang, L., Ye, Y., Liu, Z., Guo, Y., Fu, Y.: Large scale incremental learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 374–382 (2019), https://arxiv.org/abs/1905.13260
Yoon, J., Yang, E., Lee, J., Hwang, S.: Lifelong learning with dynamically expandable networks. In: International Conference on Learning Representations, ICLR (2018)
Yu, Y.C., Huang, C.P., Chen, J.J., Chang, K.P., Lai, Y.H., Yang, F.E., Wang, Y.C.F.: Select and distill: Selective dual-teacher knowledge transfer for continual learning on vision-language models. arXiv preprint arXiv:2403.09296 (2024)
Zhu, Y., Wang, Y.: Student customized knowledge distillation: Bridging the gap between student and teacher. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 5057–5066 (2021)
Acknowledgments
This work was supported by IITP grant funded by the Korea government (RS-2023-00236245/Dev. of Perception/Planning AI SW for Seamless Autonomous Driving in Adverse Weather/Unstructured Env., IITP-2024-No.RS-2023-00255968/AI Convergence Innovation Human Resources Development, RS-2021-II212068/AI Innovation Hub), and Korea NRF grant (NRF-2022R1A2C1091402). W. Hwang is the corresponding author.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Han, J., Na, J., Hwang, W. (2025). SRIL: Selective Regularization for Class-Incremental Learning. In: Cho, M., Laptev, I., Tran, D., Yao, A., Zha, H. (eds) Computer Vision – ACCV 2024. ACCV 2024. Lecture Notes in Computer Science, vol 15479. Springer, Singapore. https://doi.org/10.1007/978-981-96-0966-6_21
Download citation
DOI: https://doi.org/10.1007/978-981-96-0966-6_21
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-0965-9
Online ISBN: 978-981-96-0966-6
eBook Packages: Computer ScienceComputer Science (R0)