Abstract
This paper introduces a new hybrid descriptor for 3D point matching and point cloud registration, combining local geometrical properties and learning-based feature propagation for each point’s neighborhood structure description. The proposed architecture first extracts prior geometrical information by computing each point’s planarity, anisotropy, and omnivariance using a Principal Components Analysis (PCA). This prior information is completed by a descriptor based on the normal vectors estimated thanks to constructing a neighborhood based on triangles. The final geometrical descriptor is propagated between the points using local graph convolutions and attention mechanisms. The new feature extractor is evaluated on ModelNet40, Bunny Stanford dataset, KITTI, and MVP (Multi-View Partial)-RG for point cloud registration and shows interesting results, particularly on noisy and low overlapping point clouds.The code will be released after publication.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aldoma, A., Marton, Z.C., Tombari, F., et al.: Tutorial: Point cloud library: Three-dimensional object recognition and 6 dof pose estimation. IEEE Rob. & Auto. Mag. 19(3), 80–91 (2012)
Audette, M.A., Ferrie, F.P., Peters, T.M.: An algorithmic overview of surface registration techniques for medical imaging. Med. Imag. Anal. 4(3), 201–217 (2000)
Avidar, D., Malah, D., Barzohar, M.: Local-to-global point cloud registration using a dictionary of viewpoint descriptors. In: IEEE Int. Conf. on Comput. Vision. pp. 891–899 (2017)
Besl, P.J., McKay, N.D.: Method for registration of 3-d shapes. In: Sensor fusion IV: control paradigms and data structures. vol. 1611, pp. 586–606 (1992)
Dong, Z., Liang, F., Yang, B., Xu, Y., Zang, Y., Li, J., Wang, Y., Dai, W., Fan, H., Hyyppä, J., et al.: Registration of large-scale terrestrial laser scanner point clouds: A review and benchmark. ISPRS J. Photogramm. Remote. Sens. 163, 327–342 (2020)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)
Fu, K., Liu, S., Luo, X., Wang, M.: Robust point cloud registration framework based on deep graph matching. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 8893–8902 (2021)
Gojcic, Z., Zhou, C., Wegner, J.D., Wieser, A.: The perfect match: 3d point cloud matching with smoothed densities. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 5545–5554 (2019)
Haala, N., Peter, M., Kremer, J., et al.: Mobile lidar mapping for 3d point cloud collection in urban areas-a performance test. Int. Arch. Photo. Remote Sens. Spat. Inf. Sci 37, 1119–1127 (2008)
Hu, X., Liu, H., Baena, F.R.Y.: Markerless navigation system for orthopaedic knee surgery: A proof of concept study. IEEE Access 9, 64708–64718 (2021)
Huang, S., Gojcic, Z., Usvyatsov, M., et al.: Predator: Registration of 3d point clouds with low overlap. In: IEEE/CVF Conf. Comput. Vision Pattern Recognit. pp. 4267–4276 (2021)
Kadam, P., Zhang, M., Liu, S., et al.: R-pointhop: A green, accurate, and unsupervised point cloud registration method. IEEE Trans. on Ima. Process. 31, 2710–2725 (2022)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Li, J., Lee, G.H.: Usip: Unsupervised stable interest point detection from 3d point clouds. arXiv preprint arXiv:1904.00229 (2019)
Li, J., Zhang, C., Xu, Z., Zhou, H., Zhang, C.: Iterative Distance-Aware Similarity Matrix Convolution with Mutual-Supervised Point Elimination for Efficient Point Cloud Registration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 378–394. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_23
Li, Y., Harada, T.: Lepard: Learning partial point cloud matching in rigid and deformable scenes. In: IEEE/CVF Conf. on Comput. Vis. and Pattern Recogn. pp. 5554–5564 (2022)
Pan, L., Cai, Z., Liu, Z.: Robust partial-to-partial point cloud registration in a full range. IEEE Rob. and Auto, Lett (2024)
Pomerleau, F., Colas, F., Siegwart, R., et al.: A review of point cloud registration algorithms for mobile robotics. Found. and Trends® in Rob. 4(1), 1–104 (2015)
Qi, C.R., Su, H., et al.: Pointnet: Deep learning on point sets for 3d classification and segmentation. In: Conf. Comput. Vision Pattern Recognit. pp. 652–660 (2017)
Qin, Z., Yu, H., Wang, C., et al.: Geometric transformer for fast and robust point cloud registration. In: IEEE/CV Conf. Comput. Vision Pattern Recognit. pp. 11143–11152 (2022)
Ran, H., Liu, J., Wang, C.: Surface representation for point clouds. In: IEEE/CVF Conf. on Comp. Vis. and Pattern Recog. pp. 18942–18952 (2022)
Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (fpfh) for 3d registration. In: IEEE Int. Conf. Rob. and Auto. pp. 3212–3217 (2009)
Rusu, R.B., Blodow, N., et al.: Fast point feature histograms (fpfh) for 3d registration. In: IEEE Int. Conf. on Rob. and Auto. pp. 3212–3217 (2009)
Sarlin, P.E., DeTone, D., et al.: SuperGlue: Learning feature matching with graph neural networks. In: Conf. Comput. Vision Pattern Recognit. (2020)
Schwarz, B.: Mapping the world in 3d. Nat. Photo. 4(7), 429–430 (2010)
Shi, C., Chen, X., Huang, K., et al.: Keypoint matching for point cloud registration using multiplex dynamic graph attention networks. IEEE Rob. and Auto. Let. 6, 8221–8228 (2021)
Shi, S., Wang, Z., Shi, J., et al.: From points to parts: 3d object detection from point cloud with part-aware and part-aggregation network. EEE Trans. Pattern Anal. Mach. Intell. 43(8), 2647–2664 (2020)
Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly stochastic matrices. Pacific J. of Math
Slimani, K., Achard, C., Tamadazte, B.: Rocnet++: Triangle-based descriptor for accurate and robust point cloud registration. Pattern Recogn. 147, 110108 (2024)
Slimani, K., Tamadazte, B., Achard, C.: Rocnet: 3d robust registration of point-clouds using deep learning. arXiv preprint arXiv:2303.07963 (2023)
Su, J., Ahmed, M., Lu, Y., et al.: Roformer: Enhanced transformer with rotary position embedding. Neurocomputing 568, 127063 (2024)
Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: Conf. on Comp. Grap. and Inter. Tech. pp. 311–318 (1994)
Vaswani, A., Shazeer, N., et al.: Attention is all you need. Adv. Neural. Inf. Process. Syst. 30 (2017)
Wang, Q., Kim, M.K.: Applications of 3d point cloud data in the construction industry: A fifteen-year review from 2004 to 2018. Adv. Eng. Info. 39, 306–319 (2019)
Wang, Y., Solomon, J.M.: Deep closest point: Learning representations for point cloud registration. In: IEEE Int. Conf. on Comput. Vision (2019)
Wang, Y., Solomon, J.M.: Prnet: Self-supervised learning for partial-to-partial registration. Adv. Neural. Inf. Process. Syst. 32 (2019)
Wang, Y., Sun, Y., et al.: Dynamic graph cnn for learning on point clouds. ACM Trans. on Grap. (2019)
Wu, Z., Song, S., Khosla, A., et al.: 3d shapenets: A deep representation for volumetric shapes. In: Conf. Comput. Vision Pattern Recognit. pp. 1912–1920 (2015)
Xia, Y., Gladkova, M., Wang, R., Li, Q., Stilla, U., Henriques, J.F., Cremers, D.: Casspr: Cross attention single scan place recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 8461–8472 (2023)
Xia, Y., Xu, Y., Li, S., Wang, R., Du, J., Cremers, D., Stilla, U.: Soe-net: A self-attention and orientation encoding network for point cloud based place recognition. In: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition. pp. 11348–11357 (2021)
Yang, J., Cao, Z., Zhang, Q.: A fast and robust local descriptor for 3d point cloud registration. Info. Sci. 346, 163–179 (2016)
Yang, J., Zhao, M., Wu, Y., et al.: Accurate and robust registration of low overlapping point clouds. Comput. & Graph. 118, 146–160 (2024)
Yew, Z.J., Lee, G.H.: Rpm-net: Robust point matching using learned features. In: IEEE/CVF Conf. Comput. Vision Pattern Recognit. pp. 11824–11833 (2020)
Yew, Z.J., Lee, G.H.: 3dfeat-net: Weakly supervised local 3d features for point cloud registration. In: Euro. Confe. on Comput. Vision (2018)
Yu, H., Hou, J., Qin, Z., Saleh, M., Shugurov, I., Wang, K., Busam, B., Ilic, S.: Riga: Rotation-invariant and globally-aware descriptors for point cloud registration. IEEE Transactions on Pattern Analysis and Machine Intelligence (2024)
Zhang, Z., Sun, J., Dai, Y., et al.: Vrnet: Learning the rectified virtual corresponding points for 3d point cloud registration. IEEE Trans. on Cir. and Sys. for Video Tech. 32, 4997–5010 (2022)
Zhou, Q.Y., Park, J., Koltun, V.: Fast global registration. In: Europ. Conf. on Computer Vision. pp. 766–782 (2016)
Acknowledgements
This work was supported by the French ANR program MARSurg (ANR-21-CE19-0026).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Slimani, K., Tamadazte, B., Achard, C. (2025). LoGDesc: Local Geometric Features Aggregation for Robust Point Cloud Registration. In: Cho, M., Laptev, I., Tran, D., Yao, A., Zha, H. (eds) Computer Vision – ACCV 2024. ACCV 2024. Lecture Notes in Computer Science, vol 15480. Springer, Singapore. https://doi.org/10.1007/978-981-96-0969-7_24
Download citation
DOI: https://doi.org/10.1007/978-981-96-0969-7_24
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-0968-0
Online ISBN: 978-981-96-0969-7
eBook Packages: Computer ScienceComputer Science (R0)