Skip to main content

EDeRF: Updating Local Scenes and Editing Across Fields for Real-Time Dynamic Reconstruction of Road Scene

  • Conference paper
  • First Online:
Computer Vision – ACCV 2024 (ACCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15481))

Included in the following conference series:

  • 106 Accesses

Abstract

NeRF provides high reconstruction accuracy but is slow for dynamic scenes. Editable NeRF speeds up dynamics by editing static scenes, reducing retraining and succeeding in autonomous driving simulation. However, the lack of depth cameras and the difficulty in obtaining precise vehicle poses make real-time dynamic road scene reconstruction challenging, particularly in swiftly and accurately reconstructing new vehicles entering the scene and their trajectories. We propose EDeRF, a method for real-time dynamic road scene reconstruction from fixed cameras such as traffic surveillance through collaboration of sub-NeRFs and cross-field editing. We decompose the scene space and select key areas to update new vehicles by sharing parameters and local training with sub-fields. These vehicles are then integrated into the complete scene and achieve dynamic motion by warping the sampling rays across different fields, where vehicles’ six degrees of freedom(6-DOF) is estimated based on inter-frame displacement and rigid body contact constraints. We have conducted physical experiments simulating traffic monitoring scenes. Results show that EDeRF outperforms comparative methods in efficiency and accuracy in reconstructing the appearance and movement of newly entered vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bârsan, I.A., Liu, P., Pollefeys, M., Geiger, A.: Robust dense mapping for large-scale dynamic environments. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). pp. 7510–7517. IEEE (2018)

    Google Scholar 

  2. Bemana, M., Myszkowski, K., Seidel, H.P., Ritschel, T.: X-fields: Implicit neural view-, light-and time-image interpolation. ACM Transactions on Graphics (TOG) 39(6), 1–15 (2020)

    Article  Google Scholar 

  3. Cao, A., Johnson, J.: Hexplane: A fast representation for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 130–141 (2023)

    Google Scholar 

  4. Du, Y., Zhang, Y., Yu, H.X., Tenenbaum, J.B., Wu, J.: Neural radiance flow for 4d view synthesis and video processing. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV). pp. 14304–14314. IEEE Computer Society (2021)

    Google Scholar 

  5. Fridovich-Keil, S., Meanti, G., Warburg, F.R., Recht, B., Kanazawa, A.: K-planes: Explicit radiance fields in space, time, and appearance. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12479–12488 (2023)

    Google Scholar 

  6. Jambon, C., Kerbl, B., Kopanas, G., Diolatzis, S., Drettakis, G., Leimkühler, T.: Nerfshop: Interactive editing of neural radiance fields. Proceedings of the ACM on Computer Graphics and Interactive Techniques 6(1) (2023)

    Google Scholar 

  7. Joo, H., Soo Park, H., Sheikh, Y.: Map visibility estimation for large-scale dynamic 3d reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1122–1129 (2014)

    Google Scholar 

  8. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the fourth Eurographics symposium on Geometry processing. vol. 7 (2006)

    Google Scholar 

  9. Kopanas, G., Philip, J., Leimkühler, T., Drettakis, G.: Point-based neural rendering with per-view optimization. In: Computer Graphics Forum. vol. 40, pp. 29–43. Wiley Online Library (2021)

    Google Scholar 

  10. Kundu, A., Li, Y., Rehg, J.M.: 3d-rcnn: Instance-level 3d object reconstruction via render-and-compare. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 3559–3568 (2018)

    Google Scholar 

  11. Kurz, A., Neff, T., Lv, Z., Zollhöfer, M., Steinberger, M.: Adanerf: Adaptive sampling for real-time rendering of neural radiance fields. In: European Conference on Computer Vision. pp. 254–270. Springer (2022)

    Google Scholar 

  12. Li, S., Pan, Y.: Interactive geometry editing of neural radiance fields. arXiv preprint arXiv:2303.11537 (2023)

  13. Li, Y., Ge, Z., Yu, G., Yang, J., Wang, Z., Shi, Y., Sun, J., Li, Z.: Bevdepth: Acquisition of reliable depth for multi-view 3d object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 37, pp. 1477–1485 (2023)

    Google Scholar 

  14. Li, Z., Müller, T., Evans, A., Taylor, R.H., Unberath, M., Liu, M.Y., Lin, C.H.: Neuralangelo: High-fidelity neural surface reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 8456–8465 (2023)

    Google Scholar 

  15. Li, Z., Niklaus, S., Snavely, N., Wang, O.: Neural scene flow fields for space-time view synthesis of dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6498–6508 (2021)

    Google Scholar 

  16. Li, Z., Wang, W., Li, H., Xie, E., Sima, C., Lu, T., Qiao, Y., Dai, J.: Bevformer: Learning bird’s-eye-view representation from multi-camera images via spatiotemporal transformers. In: European conference on computer vision. pp. 1–18. Springer (2022)

    Google Scholar 

  17. Liu, L., Gu, J., Zaw Lin, K., Chua, T.S., Theobalt, C.: Neural sparse voxel fields. Adv. Neural. Inf. Process. Syst. 33, 15651–15663 (2020)

    Google Scholar 

  18. Liu, R., Xiang, J., Zhao, B., Zhang, R., Yu, J., Zheng, C.: Neural impostor: Editing neural radiance fields with explicit shape manipulation (2023), https://arxiv.org/abs/2310.05391

  19. Liu, Y., Wang, T., Zhang, X., Sun, J.: Petr: Position embedding transformation for multi-view 3d object detection. In: European Conference on Computer Vision. pp. 531–548. Springer (2022)

    Google Scholar 

  20. Liu, Y., Wen, Y., Peng, S., Lin, C., Long, X., Komura, T., Wang, W.: Gen6d: Generalizable model-free 6-dof object pose estimation from rgb images. In: European Conference on Computer Vision. pp. 298–315. Springer (2022)

    Google Scholar 

  21. Liu, Y., Tu, X., Chen, D., Han, K., Altintas, O., Wang, H., Xie, J.: Visualization of mobility digital twin: Framework design, case study, and future challenges. In: 2023 IEEE 20th International Conference on Mobile Ad Hoc and Smart Systems (MASS). pp. 170–177. IEEE (2023)

    Google Scholar 

  22. Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural volumes: Learning dynamic renderable volumes from images. arXiv preprint arXiv:1906.07751 (2019)

  23. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: Representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  24. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM transactions on graphics (TOG) 41(4), 1–15 (2022)

    Article  Google Scholar 

  25. Neff, T., Stadlbauer, P., Parger, M., Kurz, A., Mueller, J.H., Chaitanya, C.R.A., Kaplanyan, A., Steinberger, M.: Donerf: Towards real-time rendering of compact neural radiance fields using depth oracle networks. In: Computer Graphics Forum. vol. 40, pp. 45–59. Wiley Online Library (2021)

    Google Scholar 

  26. Newcombe, R.A., Fox, D., Seitz, S.M.: Dynamicfusion: Reconstruction and tracking of non-rigid scenes in real-time. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 343–352 (2015)

    Google Scholar 

  27. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 165–174 (2019)

    Google Scholar 

  28. Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D.B., Seitz, S.M., Martin-Brualla, R.: Nerfies: Deformable neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 5865–5874 (2021)

    Google Scholar 

  29. Peng, Y., Yan, Y., Liu, S., Cheng, Y., Guan, S., Pan, B., Zhai, G., Yang, X.: Cagenerf: Cage-based neural radiance field for generalized 3d deformation and animation. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) Advances in Neural Information Processing Systems. vol. 35, pp. 31402–31415. Curran Associates, Inc. (2022)

    Google Scholar 

  30. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-nerf: Neural radiance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10318–10327 (2021)

    Google Scholar 

  31. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 4104–4113 (2016)

    Google Scholar 

  32. Song, L., Chen, A., Li, Z., Chen, Z., Chen, L., Yuan, J., Xu, Y., Geiger, A.: Nerfplayer: A streamable dynamic scene representation with decomposed neural radiance fields. IEEE Trans. Visual Comput. Graphics 29(5), 2732–2742 (2023)

    Article  Google Scholar 

  33. Srinivasan, P.P., Tucker, R., Barron, J.T., Ramamoorthi, R., Ng, R., Snavely, N.: Pushing the boundaries of view extrapolation with multiplane images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 175–184 (2019)

    Google Scholar 

  34. Tancik, M., Casser, V., Yan, X., Pradhan, S., Mildenhall, B., Srinivasan, P.P., Barron, J.T., Kretzschmar, H.: Block-nerf: Scalable large scene neural view synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 8248–8258 (2022)

    Google Scholar 

  35. Tancik, M., Weber, E., Ng, E., Li, R., Yi, B., Kerr, J., Wang, T., Kristoffersen, A., Austin, J., Salahi, K., Ahuja, A., McAllister, D., Kanazawa, A.: Nerfstudio: A modular framework for neural radiance field development. In: ACM SIGGRAPH 2023 Conference Proceedings. SIGGRAPH ’23 (2023)

    Google Scholar 

  36. Tang, J., Zhou, H., Chen, X., Hu, T., Ding, E., Wang, J., Zeng, G.: Delicate textured mesh recovery from nerf via adaptive surface refinement. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 17739–17749 (2023)

    Google Scholar 

  37. Wang, X., Zhu, J., Ye, Q., Huo, Y., Ran, Y., Zhong, Z., Chen, J.: Seal-3d: Interactive pixel-level editing for neural radiance fields (2023), https://arxiv.org/abs/2307.15131

  38. Wu, X., Xu, J., Zhang, X., Bao, H., Huang, Q., Shen, Y., Tompkin, J., Xu, W.: Scanerf: Scalable bundle-adjusting neural radiance fields for large-scale scene rendering. ACM Transactions on Graphics (TOG) 42(6), 1–18 (2023)

    Google Scholar 

  39. Wu, Z., Liu, T., Luo, L., Zhong, Z., Chen, J., Xiao, H., Hou, C., Lou, H., Chen, Y., Yang, R., et al.: Mars: An instance-aware, modular and realistic simulator for autonomous driving. In: CAAI International Conference on Artificial Intelligence. pp. 3–15. Springer (2023)

    Google Scholar 

  40. Xu, T., Harada, T.: Deforming radiance fields with cages (2022), https://arxiv.org/abs/2207.12298

  41. Yang, L., Yu, K., Tang, T., Li, J., Yuan, K., Wang, L., Zhang, X., Chen, P.: Bevheight: A robust framework for vision-based roadside 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 21611–21620 (2023)

    Google Scholar 

  42. Yang, Z., Sun, Y., Liu, S., Jia, J.: 3dssd: Point-based 3d single stage object detector. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 11040–11048 (2020)

    Google Scholar 

  43. Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: Plenoctrees for real-time rendering of neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 5752–5761 (2021)

    Google Scholar 

Download references

Acknowledgement

This work was partly supported by National Natural Science Foundation of China (Grant No. 62233002, U1913203, 61973034 and CJSP-Q2018229) and the BIT Research and Innovation Promoting Project (Grant No.2023YCXY033). We would like to thank Yu Gao, Tao Wang, Xiaodong Guo, Tianji Jiang, Kai Yu, Dianyi Yang, Jiadong Tang, and Bohan Ren for their help and guidance in writing this paper and constructing the experimental site.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1081 KB)

Supplementary material 2 (mp4 17919 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, Z., Guo, W., Yang, Y., Liu, T. (2025). EDeRF: Updating Local Scenes and Editing Across Fields for Real-Time Dynamic Reconstruction of Road Scene. In: Cho, M., Laptev, I., Tran, D., Yao, A., Zha, H. (eds) Computer Vision – ACCV 2024. ACCV 2024. Lecture Notes in Computer Science, vol 15481. Springer, Singapore. https://doi.org/10.1007/978-981-96-0972-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0972-7_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0971-0

  • Online ISBN: 978-981-96-0972-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics