Abstract
NeRF provides high reconstruction accuracy but is slow for dynamic scenes. Editable NeRF speeds up dynamics by editing static scenes, reducing retraining and succeeding in autonomous driving simulation. However, the lack of depth cameras and the difficulty in obtaining precise vehicle poses make real-time dynamic road scene reconstruction challenging, particularly in swiftly and accurately reconstructing new vehicles entering the scene and their trajectories. We propose EDeRF, a method for real-time dynamic road scene reconstruction from fixed cameras such as traffic surveillance through collaboration of sub-NeRFs and cross-field editing. We decompose the scene space and select key areas to update new vehicles by sharing parameters and local training with sub-fields. These vehicles are then integrated into the complete scene and achieve dynamic motion by warping the sampling rays across different fields, where vehicles’ six degrees of freedom(6-DOF) is estimated based on inter-frame displacement and rigid body contact constraints. We have conducted physical experiments simulating traffic monitoring scenes. Results show that EDeRF outperforms comparative methods in efficiency and accuracy in reconstructing the appearance and movement of newly entered vehicles.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bârsan, I.A., Liu, P., Pollefeys, M., Geiger, A.: Robust dense mapping for large-scale dynamic environments. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). pp. 7510–7517. IEEE (2018)
Bemana, M., Myszkowski, K., Seidel, H.P., Ritschel, T.: X-fields: Implicit neural view-, light-and time-image interpolation. ACM Transactions on Graphics (TOG) 39(6), 1–15 (2020)
Cao, A., Johnson, J.: Hexplane: A fast representation for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 130–141 (2023)
Du, Y., Zhang, Y., Yu, H.X., Tenenbaum, J.B., Wu, J.: Neural radiance flow for 4d view synthesis and video processing. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV). pp. 14304–14314. IEEE Computer Society (2021)
Fridovich-Keil, S., Meanti, G., Warburg, F.R., Recht, B., Kanazawa, A.: K-planes: Explicit radiance fields in space, time, and appearance. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12479–12488 (2023)
Jambon, C., Kerbl, B., Kopanas, G., Diolatzis, S., Drettakis, G., Leimkühler, T.: Nerfshop: Interactive editing of neural radiance fields. Proceedings of the ACM on Computer Graphics and Interactive Techniques 6(1) (2023)
Joo, H., Soo Park, H., Sheikh, Y.: Map visibility estimation for large-scale dynamic 3d reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1122–1129 (2014)
Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the fourth Eurographics symposium on Geometry processing. vol. 7 (2006)
Kopanas, G., Philip, J., Leimkühler, T., Drettakis, G.: Point-based neural rendering with per-view optimization. In: Computer Graphics Forum. vol. 40, pp. 29–43. Wiley Online Library (2021)
Kundu, A., Li, Y., Rehg, J.M.: 3d-rcnn: Instance-level 3d object reconstruction via render-and-compare. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 3559–3568 (2018)
Kurz, A., Neff, T., Lv, Z., Zollhöfer, M., Steinberger, M.: Adanerf: Adaptive sampling for real-time rendering of neural radiance fields. In: European Conference on Computer Vision. pp. 254–270. Springer (2022)
Li, S., Pan, Y.: Interactive geometry editing of neural radiance fields. arXiv preprint arXiv:2303.11537 (2023)
Li, Y., Ge, Z., Yu, G., Yang, J., Wang, Z., Shi, Y., Sun, J., Li, Z.: Bevdepth: Acquisition of reliable depth for multi-view 3d object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 37, pp. 1477–1485 (2023)
Li, Z., Müller, T., Evans, A., Taylor, R.H., Unberath, M., Liu, M.Y., Lin, C.H.: Neuralangelo: High-fidelity neural surface reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 8456–8465 (2023)
Li, Z., Niklaus, S., Snavely, N., Wang, O.: Neural scene flow fields for space-time view synthesis of dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6498–6508 (2021)
Li, Z., Wang, W., Li, H., Xie, E., Sima, C., Lu, T., Qiao, Y., Dai, J.: Bevformer: Learning bird’s-eye-view representation from multi-camera images via spatiotemporal transformers. In: European conference on computer vision. pp. 1–18. Springer (2022)
Liu, L., Gu, J., Zaw Lin, K., Chua, T.S., Theobalt, C.: Neural sparse voxel fields. Adv. Neural. Inf. Process. Syst. 33, 15651–15663 (2020)
Liu, R., Xiang, J., Zhao, B., Zhang, R., Yu, J., Zheng, C.: Neural impostor: Editing neural radiance fields with explicit shape manipulation (2023), https://arxiv.org/abs/2310.05391
Liu, Y., Wang, T., Zhang, X., Sun, J.: Petr: Position embedding transformation for multi-view 3d object detection. In: European Conference on Computer Vision. pp. 531–548. Springer (2022)
Liu, Y., Wen, Y., Peng, S., Lin, C., Long, X., Komura, T., Wang, W.: Gen6d: Generalizable model-free 6-dof object pose estimation from rgb images. In: European Conference on Computer Vision. pp. 298–315. Springer (2022)
Liu, Y., Tu, X., Chen, D., Han, K., Altintas, O., Wang, H., Xie, J.: Visualization of mobility digital twin: Framework design, case study, and future challenges. In: 2023 IEEE 20th International Conference on Mobile Ad Hoc and Smart Systems (MASS). pp. 170–177. IEEE (2023)
Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural volumes: Learning dynamic renderable volumes from images. arXiv preprint arXiv:1906.07751 (2019)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: Representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)
Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM transactions on graphics (TOG) 41(4), 1–15 (2022)
Neff, T., Stadlbauer, P., Parger, M., Kurz, A., Mueller, J.H., Chaitanya, C.R.A., Kaplanyan, A., Steinberger, M.: Donerf: Towards real-time rendering of compact neural radiance fields using depth oracle networks. In: Computer Graphics Forum. vol. 40, pp. 45–59. Wiley Online Library (2021)
Newcombe, R.A., Fox, D., Seitz, S.M.: Dynamicfusion: Reconstruction and tracking of non-rigid scenes in real-time. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 343–352 (2015)
Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 165–174 (2019)
Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D.B., Seitz, S.M., Martin-Brualla, R.: Nerfies: Deformable neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 5865–5874 (2021)
Peng, Y., Yan, Y., Liu, S., Cheng, Y., Guan, S., Pan, B., Zhai, G., Yang, X.: Cagenerf: Cage-based neural radiance field for generalized 3d deformation and animation. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) Advances in Neural Information Processing Systems. vol. 35, pp. 31402–31415. Curran Associates, Inc. (2022)
Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-nerf: Neural radiance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10318–10327 (2021)
Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 4104–4113 (2016)
Song, L., Chen, A., Li, Z., Chen, Z., Chen, L., Yuan, J., Xu, Y., Geiger, A.: Nerfplayer: A streamable dynamic scene representation with decomposed neural radiance fields. IEEE Trans. Visual Comput. Graphics 29(5), 2732–2742 (2023)
Srinivasan, P.P., Tucker, R., Barron, J.T., Ramamoorthi, R., Ng, R., Snavely, N.: Pushing the boundaries of view extrapolation with multiplane images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 175–184 (2019)
Tancik, M., Casser, V., Yan, X., Pradhan, S., Mildenhall, B., Srinivasan, P.P., Barron, J.T., Kretzschmar, H.: Block-nerf: Scalable large scene neural view synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 8248–8258 (2022)
Tancik, M., Weber, E., Ng, E., Li, R., Yi, B., Kerr, J., Wang, T., Kristoffersen, A., Austin, J., Salahi, K., Ahuja, A., McAllister, D., Kanazawa, A.: Nerfstudio: A modular framework for neural radiance field development. In: ACM SIGGRAPH 2023 Conference Proceedings. SIGGRAPH ’23 (2023)
Tang, J., Zhou, H., Chen, X., Hu, T., Ding, E., Wang, J., Zeng, G.: Delicate textured mesh recovery from nerf via adaptive surface refinement. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 17739–17749 (2023)
Wang, X., Zhu, J., Ye, Q., Huo, Y., Ran, Y., Zhong, Z., Chen, J.: Seal-3d: Interactive pixel-level editing for neural radiance fields (2023), https://arxiv.org/abs/2307.15131
Wu, X., Xu, J., Zhang, X., Bao, H., Huang, Q., Shen, Y., Tompkin, J., Xu, W.: Scanerf: Scalable bundle-adjusting neural radiance fields for large-scale scene rendering. ACM Transactions on Graphics (TOG) 42(6), 1–18 (2023)
Wu, Z., Liu, T., Luo, L., Zhong, Z., Chen, J., Xiao, H., Hou, C., Lou, H., Chen, Y., Yang, R., et al.: Mars: An instance-aware, modular and realistic simulator for autonomous driving. In: CAAI International Conference on Artificial Intelligence. pp. 3–15. Springer (2023)
Xu, T., Harada, T.: Deforming radiance fields with cages (2022), https://arxiv.org/abs/2207.12298
Yang, L., Yu, K., Tang, T., Li, J., Yuan, K., Wang, L., Zhang, X., Chen, P.: Bevheight: A robust framework for vision-based roadside 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 21611–21620 (2023)
Yang, Z., Sun, Y., Liu, S., Jia, J.: 3dssd: Point-based 3d single stage object detector. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 11040–11048 (2020)
Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: Plenoctrees for real-time rendering of neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 5752–5761 (2021)
Acknowledgement
This work was partly supported by National Natural Science Foundation of China (Grant No. 62233002, U1913203, 61973034 and CJSP-Q2018229) and the BIT Research and Innovation Promoting Project (Grant No.2023YCXY033). We would like to thank Yu Gao, Tao Wang, Xiaodong Guo, Tianji Jiang, Kai Yu, Dianyi Yang, Jiadong Tang, and Bohan Ren for their help and guidance in writing this paper and constructing the experimental site.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 2 (mp4 17919 KB)
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Liang, Z., Guo, W., Yang, Y., Liu, T. (2025). EDeRF: Updating Local Scenes and Editing Across Fields for Real-Time Dynamic Reconstruction of Road Scene. In: Cho, M., Laptev, I., Tran, D., Yao, A., Zha, H. (eds) Computer Vision – ACCV 2024. ACCV 2024. Lecture Notes in Computer Science, vol 15481. Springer, Singapore. https://doi.org/10.1007/978-981-96-0972-7_4
Download citation
DOI: https://doi.org/10.1007/978-981-96-0972-7_4
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-0971-0
Online ISBN: 978-981-96-0972-7
eBook Packages: Computer ScienceComputer Science (R0)