Skip to main content

Unknown-Aware Diverse Prompt Learning for Open-Set Single Domain Generalization-Based Face Anti-spoofing

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15352))

Included in the following conference series:

  • 7 Accesses

Abstract

Recently, the generalization capability of face anti-spoofing models has taken the attention of both industry and academia. Among all the problems, domain shift and unknown attacks are the most serious problems affecting generalization performance. Existing work usually focuses on dealing with one of the above problems. In this paper, we address a challenging but practical problem, open-set single domain generalization-based (OSSDG-based) face anti-spoofing, simultaneously addressing these two problems with limited training data. We propose a novel unknown-aware diverse prompt learning framework, which mines the visual-language pre-training knowledge for OSSDG-based face anti-spoofing by text prompt generation and unknown-aware learning regularization. Extensive experimental results demonstrate that the proposed method achieves state-of-the-art performance on both known classes and unknown attacks in cross-scenario domains with a single training domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu, Z., Qin, Y., Li, X., Zhao, C., Lei, Z., Zhao, G.: Deep learning for face anti-spoofing: a survey. TPAMI 45(5), 5609ā€“5631 (2023)

    MATH  Google Scholar 

  2. Jia, Y., Zhang, J., Shan, S., Chen, X.: Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing. PR 115, 107888 (2021)

    Google Scholar 

  3. Liu, Y., Stehouwer, J., Jourabloo, A., Liu, X.: Deep tree learning for zero-shot face anti-spoofing. In: CVPR, pp. 4680ā€“4689 (2019)

    Google Scholar 

  4. Jiang, F., et al.: Open-set single-domain generalization for robust face anti-spoofing. IJCV, 1ā€“22 (2024)

    Google Scholar 

  5. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML, pp. 8748ā€“8763 (2021)

    Google Scholar 

  6. Srivatsan, K., Naseer, M., Nandakumar, K.: Flip: cross-domain face anti-spoofing with language guidance. In: ICCV, pp. 19 685ā€“19 696 (2023)

    Google Scholar 

  7. Liu, A., et al.: CFPL-FAS: class free prompt learning for generalizable face anti-spoofing. In: CVPR, pp. 222ā€“232 (2024)

    Google Scholar 

  8. Yan, P., Liu, X., Zhang, P., Lu, H.: Learning convolutional multi-level transformers for image-based person re-identification. Vis. Intell. 1(1), 24 (2023)

    Article  MATH  Google Scholar 

  9. Liu, Y., Jourabloo, A., Liu, X.: Learning deep models for face anti-spoofing: binary or auxiliary supervision. In: CVPR, pp. 389ā€“398 (2018)

    Google Scholar 

  10. Yu, Z., Cai, R., Cui, Y., Liu, A., Chen, C.: Visual prompt flexible-modal face anti-spoofing. arXiv preprint arXiv:2307.13958 (2023)

  11. Li, H., Li, W., Cao, H., Wang, S., Huang, F., Kot, A.C.: Unsupervised domain adaptation for face anti-spoofing. TIFS 13(7), 1794ā€“1809 (2018)

    MATH  Google Scholar 

  12. Li, Q., Wang, W., Xu, C., Sun, Z., Yang, M.-H.: Learning disentangled representation for one-shot progressive face swapping. In: TPAMI (2024)

    Google Scholar 

  13. Li, Q., Sun, Z., He, R., Tan, T.: Deep supervised discrete hashing. In: NeurIPS, pp. 2479ā€“2488 (2017)

    Google Scholar 

  14. Zhang, J., Huang, J., Jin, S., Lu, S.: Vision-language models for vision tasks: a survey. arXiv preprint arXiv:2304.00685 (2023)

  15. Li, Z., Lv, X., Yu, W., Liu, Q., Lin, J., Zhang, S.: Face shape transfer via semantic warping. Vis. Intell. 2(1), 1ā€“11 (2024)

    Article  Google Scholar 

  16. Peng, S., Zhu, X., Yi, D., Qian, C., Lei, Z.: Formulating facial mesh tracking as a differentiable optimization problem: a backpropagation-based solution. Vis. Intell. 21(1), 1ā€“12 (2024)

    MATH  Google Scholar 

  17. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language models. IJCV 130(9), 2337ā€“2348 (2022)

    Article  MATH  Google Scholar 

  18. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Conditional prompt learning for vision-language models. arXiv preprint arXiv:2203.05557 (2022)

  19. Bahng, H., Jahanian, A., Sankaranarayanan, S., Isola, P.: Exploring visual prompts for adapting large-scale models. arXiv preprint arXiv:2203.17274 (2022)

  20. Zang, Y., Li, W., Zhou, K., Huang, C., Loy, C.C.: Unified vision and language prompt learning. arXiv preprint arXiv:2210.07225 (2022)

  21. Zhang, Z., Yan, J., Liu, S., Lei, Z., Yi, D., Li, S.Z.: A face antispoofing database with diverse attacks. In: ICB, pp. 26ā€“31 (2012)

    Google Scholar 

  22. Chingovska, I., Anjos, A., Marcel, S.: On the effectiveness of local binary patterns in face anti-spoofing. In: Proceedings of International Conference of the Biometrics Special Interest Group, pp. 1ā€“7 (2012)

    Google Scholar 

  23. Wen, D., Han, H., Jain, A.K.: Face spoof detection with image distortion analysis. TIFS 10(4), 746ā€“761 (2015)

    MATH  Google Scholar 

  24. Boulkenafet, Z., Komulainen, J., Li, L., Feng, X., Hadid, A.: OULU-NPU: a mobile face presentation attack database with real-world variations. In: FG, pp. 612ā€“618 (2017)

    Google Scholar 

  25. Heusch, G., George, A., GeissbĆ¼hler, D., Mostaani, Z., Marcel, S.: Deep models and shortwave infrared information to detect face presentation attacks. TBIOM 2(4), 399ā€“409 (2020)

    Google Scholar 

  26. Boulkenafet, Z., Komulainen, J., Hadid, A.: Face spoofing detection using colour texture analysis. TIFS 11(8), 1818ā€“1830 (2016)

    MATH  Google Scholar 

  27. Wang, G., Han, H., Shan, S., Chen, X.: Unsupervised adversarial domain adaptation for cross-domain face presentation attack detection. TIFS 16, 56ā€“69 (2020)

    MATH  Google Scholar 

  28. Wang, C.-Y., Lu, Y.-D., Yang, S.-T., Lai, S.-H.: PatchNet: a simple face anti-spoofing framework via fine-grained patch recognition. In: CVPR, pp. 20 281ā€“20 290 (2022)

    Google Scholar 

  29. Huang, H.-P., et al.: Adaptive transformers for robust few-shot cross-domain face anti-spoofing. In: ECCV, pp. 37ā€“54 (2022)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Key Research and Development Program of China (Grant No. 2022YFC3310400), in part by the Natural Science Foundation of China (Grant Nos. U23B2054, 62076240, 62102419, 62276263 and 62406133), in part by the Beijing Municipal Natural Science Foundation (Grant No. 4222054), in part by the Natural Science Foundation of Hunan Province (Grant No.2024JJ6389) and in part by the Hengyang Science and Technology Plan Project (Grant No.202330046190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, F., Li, Q., Wang, W., Liu, B., Sun, Z. (2025). Unknown-Aware Diverse Prompt Learning for Open-Set Single Domain Generalization-Based Face Anti-spoofing. In: Yu, S., et al. Biometric Recognition. CCBR 2024. Lecture Notes in Computer Science, vol 15352. Springer, Singapore. https://doi.org/10.1007/978-981-96-1068-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-1068-6_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-1067-9

  • Online ISBN: 978-981-96-1068-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics