Abstract
Query-document vocabulary mismatch represents the gap between a query’s terms and the index terms used for document retrieval. It is a significant challenge that affects severely the performance of search algorithms. Our Ph.D. focuses on building a semantic layer that can be shared by both document index terms as well as query terms in order to overcome this problem. In this paper we focus on expanding queries using aligned keyphrases. We show that state-of-the-art keyphrase generation models do improve retrieval but at the cost of an increased vocabulary mismatch. To reduce this effect, we project, using sentence-transformers, the generated keyphrases to their closest representative term from the indexed vocabulary. However, the original set consists of author-assigned annotations which may suffer from issues such as duplication and misspelling. Through the processing of these annotations, we are able to reduce the search space for query-document alignment. We repeat this experiment on keyphrases extracted by tf-idf and demonstrate significant improvements over the author keyphrases, effectively bridging the vocabulary gap and enhancing search relevance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Boudin, F.: Unsupervised keyphrase extraction with multipartite graphs. In: Walker, M., Ji, H., Stent, A. (eds.) Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 667–672. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2105, https://aclanthology.org/N18-2105
Boudin, F.: ACM-CR: a manually annotated test collection for citation recommendation. In: Proceedings of the 2021 ACM/IEEE Joint Conference on Digital Libraries, pp. 280–281. JCDL 2021, IEEE Press (2024). https://doi.org/10.1109/JCDL52503.2021.00035
Boudin, F., Gallina, Y.: Redefining absent keyphrases and their effect on retrieval effectiveness. In: Toutanova, K., Rumshisky, A., Zettlemoyer, L., Hakkani-Tur, D., Beltagy, I., Bethard, S., Cotterell, R., Chakraborty, T., Zhou, Y. (eds.) Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 4185–4193. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.naacl-main.330, https://aclanthology.org/2021.naacl-main.330
Boudin, F., Gallina, Y., Aizawa, A.: Keyphrase generation for scientific document retrieval. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 1118–1126. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.105, https://aclanthology.org/2020.acl-main.105
Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-based clustering based on hierarchical density estimates. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7819, pp. 160–172. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37456-2_14
Chen, W., Chan, H.P., Li, P., King, I.: Exclusive hierarchical decoding for deep keyphrase generation. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 1095–1105. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.103, https://aclanthology.org/2020.acl-main.103
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423, https://aclanthology.org/N19-1423
Färber, M., Jatowt, A.: Citation recommendation: approaches and datasets. Int. J. Digital Lib. 21, 375–405 (2020). https://api.semanticscholar.org/CorpusID:211132888
Hulth, A.: Improved automatic keyword extraction given more linguistic knowledge. In: Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, pp. 216–223 (2003). https://aclanthology.org/W03-1028
Kulkarni, M., Mahata, D., Arora, R., Bhowmik, R.: Learning rich representation of keyphrases from text. In: Carpuat, M., de Marneffe, M.C., Meza Ruiz, I.V. (eds.) Findings of the Association for Computational Linguistics: NAACL 2022, pp. 891–906. Association for Computational Linguistics, Seattle, United States (2022). https://doi.org/10.18653/v1/2022.findings-naacl.67, https://aclanthology.org/2022.findings-naacl.67
Lam-Adesina, A.M., Jones, G.J.F.: Applying summarization techniques for term selection in relevance feedback. In: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1–9. SIGIR 2001, Association for Computing Machinery, New York, NY, USA (2001). https://doi.org/10.1145/383952.383953
Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: Proceedings of the 31st International Conference on International Conference on Machine Learning - Volume 32, pp. II–1188–II–1196. ICML 2014 (2014). https://jmlr.org/
Lee, S., Shakir, A., Koenig, D., Lipp, J.: Open source strikes bread - new fluffy embeddings model (2024). https://www.mixedbread.ai/blog/mxbai-embed-large-v1
Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.703, https://aclanthology.org/2020.acl-main.703
Medelyan, O., Witten, I.H.: Thesaurus based automatic keyphrase indexing. In: Proceedings of the 6th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 296–297. JCDL 2006, Association for Computing Machinery, New York, NY, USA (2006). https://doi.org/10.1145/1141753.1141819
Meng, R., Yuan, X., Wang, T., Brusilovsky, P., Trischler, A., He, D.: Does order matter? an empirical study on generating multiple keyphrases as a sequence. ArXiv abs/1909.03590 (2019). https://api.semanticscholar.org/CorpusID:202540437
Meng, R., Zhao, S., Han, S., He, D., Brusilovsky, P., Chi, Y.: Deep keyphrase generation. In: Barzilay, R., Kan, M.Y. (eds.) Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 582–592. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/P17-1054, https://aclanthology.org/P17-1054
Mihalcea, R., Tarau, P.: TextRank: bringing order into text. In: Lin, D., Wu, D. (eds.) Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, pp. 404–411. Association for Computational Linguistics, Barcelona, Spain (2004). https://aclanthology.org/W04-3252
Mikolov, T., Chen, K., Corrado, G.S., Dean, J.: Efficient estimation of word representations in vector space. In: International Conference on Learning Representations (2013). https://api.semanticscholar.org/CorpusID:5959482
Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–3992. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1410, https://aclanthology.org/D19-1410
Tomokiyo, T., Hurst, M.: A language model approach to keyphrase extraction. In: Proceedings of the ACL 2003 Workshop on Multiword Expressions: Analysis, Acquisition and Treatment, pp. 33–40. Association for Computational Linguistics, Sapporo, Japan (2003). https://doi.org/10.3115/1119282.1119287, https://aclanthology.org/W03-1805
Xie, B., et al.: From statistical methods to deep learning, automatic keyphrase prediction: a survey. Inf. Process. Manag. 60(4), 103382 (2023). https://doi.org/10.1016/j.ipm.2023.103382, https://www.sciencedirect.com/science/article/pii/S030645732300119X
Zha, H.: Generic summarization and keyphrase extraction using mutual reinforcement principle and sentence clustering. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 113–120. SIGIR 2002, Association for Computing Machinery, New York, NY, USA (2002). https://doi.org/10.1145/564376.564398
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zahhar, S., Mellouli, N., Rodrigues, C. (2025). Leveraging Sentence-Transformers to Overcome Query-Document Vocabulary Mismatch in Information Retrieval. In: Barhamgi, M., et al. Web Information Systems Engineering – WISE 2024 PhD Symposium, Demos and Workshops. WISE 2024. Lecture Notes in Computer Science, vol 15463. Springer, Singapore. https://doi.org/10.1007/978-981-96-1483-7_8
Download citation
DOI: https://doi.org/10.1007/978-981-96-1483-7_8
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-1482-0
Online ISBN: 978-981-96-1483-7
eBook Packages: Computer ScienceComputer Science (R0)