Skip to main content

Leveraging Sentence-Transformers to Overcome Query-Document Vocabulary Mismatch in Information Retrieval

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2024 PhD Symposium, Demos and Workshops (WISE 2024)

Abstract

Query-document vocabulary mismatch represents the gap between a query’s terms and the index terms used for document retrieval. It is a significant challenge that affects severely the performance of search algorithms. Our Ph.D. focuses on building a semantic layer that can be shared by both document index terms as well as query terms in order to overcome this problem. In this paper we focus on expanding queries using aligned keyphrases. We show that state-of-the-art keyphrase generation models do improve retrieval but at the cost of an increased vocabulary mismatch. To reduce this effect, we project, using sentence-transformers, the generated keyphrases to their closest representative term from the indexed vocabulary. However, the original set consists of author-assigned annotations which may suffer from issues such as duplication and misspelling. Through the processing of these annotations, we are able to reduce the search space for query-document alignment. We repeat this experiment on keyphrases extracted by tf-idf and demonstrate significant improvements over the author keyphrases, effectively bridging the vocabulary gap and enhancing search relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://platform.openai.com/docs/examples/default-keywords.

  2. 2.

    https://github.com/xhluca/bm25s.

References

  1. Boudin, F.: Unsupervised keyphrase extraction with multipartite graphs. In: Walker, M., Ji, H., Stent, A. (eds.) Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 667–672. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2105, https://aclanthology.org/N18-2105

  2. Boudin, F.: ACM-CR: a manually annotated test collection for citation recommendation. In: Proceedings of the 2021 ACM/IEEE Joint Conference on Digital Libraries, pp. 280–281. JCDL 2021, IEEE Press (2024). https://doi.org/10.1109/JCDL52503.2021.00035

  3. Boudin, F., Gallina, Y.: Redefining absent keyphrases and their effect on retrieval effectiveness. In: Toutanova, K., Rumshisky, A., Zettlemoyer, L., Hakkani-Tur, D., Beltagy, I., Bethard, S., Cotterell, R., Chakraborty, T., Zhou, Y. (eds.) Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 4185–4193. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.naacl-main.330, https://aclanthology.org/2021.naacl-main.330

  4. Boudin, F., Gallina, Y., Aizawa, A.: Keyphrase generation for scientific document retrieval. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 1118–1126. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.105, https://aclanthology.org/2020.acl-main.105

  5. Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-based clustering based on hierarchical density estimates. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7819, pp. 160–172. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37456-2_14

    Chapter  MATH  Google Scholar 

  6. Chen, W., Chan, H.P., Li, P., King, I.: Exclusive hierarchical decoding for deep keyphrase generation. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 1095–1105. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.103, https://aclanthology.org/2020.acl-main.103

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423, https://aclanthology.org/N19-1423

  8. Färber, M., Jatowt, A.: Citation recommendation: approaches and datasets. Int. J. Digital Lib. 21, 375–405 (2020). https://api.semanticscholar.org/CorpusID:211132888

  9. Hulth, A.: Improved automatic keyword extraction given more linguistic knowledge. In: Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, pp. 216–223 (2003). https://aclanthology.org/W03-1028

  10. Kulkarni, M., Mahata, D., Arora, R., Bhowmik, R.: Learning rich representation of keyphrases from text. In: Carpuat, M., de Marneffe, M.C., Meza Ruiz, I.V. (eds.) Findings of the Association for Computational Linguistics: NAACL 2022, pp. 891–906. Association for Computational Linguistics, Seattle, United States (2022). https://doi.org/10.18653/v1/2022.findings-naacl.67, https://aclanthology.org/2022.findings-naacl.67

  11. Lam-Adesina, A.M., Jones, G.J.F.: Applying summarization techniques for term selection in relevance feedback. In: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1–9. SIGIR 2001, Association for Computing Machinery, New York, NY, USA (2001). https://doi.org/10.1145/383952.383953

  12. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: Proceedings of the 31st International Conference on International Conference on Machine Learning - Volume 32, pp. II–1188–II–1196. ICML 2014 (2014). https://jmlr.org/

  13. Lee, S., Shakir, A., Koenig, D., Lipp, J.: Open source strikes bread - new fluffy embeddings model (2024). https://www.mixedbread.ai/blog/mxbai-embed-large-v1

  14. Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.703, https://aclanthology.org/2020.acl-main.703

  15. Medelyan, O., Witten, I.H.: Thesaurus based automatic keyphrase indexing. In: Proceedings of the 6th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 296–297. JCDL 2006, Association for Computing Machinery, New York, NY, USA (2006). https://doi.org/10.1145/1141753.1141819

  16. Meng, R., Yuan, X., Wang, T., Brusilovsky, P., Trischler, A., He, D.: Does order matter? an empirical study on generating multiple keyphrases as a sequence. ArXiv abs/1909.03590 (2019). https://api.semanticscholar.org/CorpusID:202540437

  17. Meng, R., Zhao, S., Han, S., He, D., Brusilovsky, P., Chi, Y.: Deep keyphrase generation. In: Barzilay, R., Kan, M.Y. (eds.) Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 582–592. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/P17-1054, https://aclanthology.org/P17-1054

  18. Mihalcea, R., Tarau, P.: TextRank: bringing order into text. In: Lin, D., Wu, D. (eds.) Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, pp. 404–411. Association for Computational Linguistics, Barcelona, Spain (2004). https://aclanthology.org/W04-3252

  19. Mikolov, T., Chen, K., Corrado, G.S., Dean, J.: Efficient estimation of word representations in vector space. In: International Conference on Learning Representations (2013). https://api.semanticscholar.org/CorpusID:5959482

  20. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–3992. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1410, https://aclanthology.org/D19-1410

  21. Tomokiyo, T., Hurst, M.: A language model approach to keyphrase extraction. In: Proceedings of the ACL 2003 Workshop on Multiword Expressions: Analysis, Acquisition and Treatment, pp. 33–40. Association for Computational Linguistics, Sapporo, Japan (2003). https://doi.org/10.3115/1119282.1119287, https://aclanthology.org/W03-1805

  22. Xie, B., et al.: From statistical methods to deep learning, automatic keyphrase prediction: a survey. Inf. Process. Manag. 60(4), 103382 (2023). https://doi.org/10.1016/j.ipm.2023.103382, https://www.sciencedirect.com/science/article/pii/S030645732300119X

  23. Zha, H.: Generic summarization and keyphrase extraction using mutual reinforcement principle and sentence clustering. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 113–120. SIGIR 2002, Association for Computing Machinery, New York, NY, USA (2002). https://doi.org/10.1145/564376.564398

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saber Zahhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zahhar, S., Mellouli, N., Rodrigues, C. (2025). Leveraging Sentence-Transformers to Overcome Query-Document Vocabulary Mismatch in Information Retrieval. In: Barhamgi, M., et al. Web Information Systems Engineering – WISE 2024 PhD Symposium, Demos and Workshops. WISE 2024. Lecture Notes in Computer Science, vol 15463. Springer, Singapore. https://doi.org/10.1007/978-981-96-1483-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-1483-7_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-1482-0

  • Online ISBN: 978-981-96-1483-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics