Skip to main content

Prototype Enhancement for Few-Shot Point Cloud Semantic Segmentation

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15252))

  • 127 Accesses

Abstract

Few-shot point cloud semantic segmentation plays a fundamental role in the computer vision community since annotating point cloud data is quite time-consuming and labor-intensive. Current semantic segmentation methods employ few-shot learning to reduce dependence on labeled samples and enhance model generalization to new categories. Due to the complex 3D geometries of point clouds, significant feature variations exist even within the same category, meaning that a few training samples (support set) might not fully capture all category features. This discrepancy leads to differences in distribution between the support set and the samples used to evaluate the model (query set), impacting the effectiveness of traditional semantic segmentation approaches. In our paper, we employ a prototype enhancement strategy for few-shot point cloud semantic segmentation. Specifically, to align the prototype representation from the support set more closely with the query set, our framework proposes two modules to enhance the generated original prototype, we have developed a Cross Feature Enhancement module, which enhances support set features by reducing differences in terms of distribution of support and query sets. Moreover, we proposed a prototype correction module to refine the prototypes with the aim of matching query sets accurately. We conducted thorough experiments demonstrates the state-of-the-art performance of our model on publicly available benchmarks including S3DIS and ScanNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, S.M., Tan, Y.Z., Chew, C.M., Al Mamun, A., Wong, F.S.: Edge and corner detection for unorganized 3D point clouds with application to robotic welding. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7350–7355. IEEE (2018)

    Google Scholar 

  2. Armeni, I., et al.: 3D semantic parsing of large-scale indoor spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1534–1543 (2016)

    Google Scholar 

  3. Chen, C., Qian, S., Fang, Q., Xu, C.: Hapgn: hierarchical attentive pooling graph network for point cloud segmentation. IEEE Trans. Multimedia 23, 2335–2346 (2020)

    Article  MATH  Google Scholar 

  4. Chen, Y., et al.: Shape self-correction for unsupervised point cloud understanding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8382–8391 (2021)

    Google Scholar 

  5. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet: richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5828–5839 (2017)

    Google Scholar 

  6. Dong, N., Xing, E.P.: Few-shot semantic segmentation with prototype learning. In: BMVC, vol. 3, p. 4 (2018)

    Google Scholar 

  7. Jing, Y., Yang, Y., Feng, Z., Ye, J., Yu, Y., Song, M.: Neural style transfer: a review. IEEE Trans. Visual Comput. Graphics 26(11), 3365–3385 (2019)

    Article  MATH  Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  9. Krispel, G., Opitz, M., Waltner, G., Possegger, H., Bischof, H.: Fuseseg: lidar point cloud segmentation fusing multi-modal data. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1874–1883 (2020)

    Google Scholar 

  10. Lang, C., Cheng, G., Tu, B., Han, J.: Learning what not to segment: A new perspective on few-shot segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8057–8067 (2022)

    Google Scholar 

  11. Lewandowski, B., Liebner, J., Wengefeld, T., Müller, S., Gross, H.M.: Fast and robust 3D person detector and posture estimator for mobile robotic applications. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 4869–4875. IEEE (2019)

    Google Scholar 

  12. Li, G., Jampani, V., Sevilla-Lara, L., Sun, D., Kim, J., Kim, J.: Adaptive prototype learning and allocation for few-shot segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8334–8343 (2021)

    Google Scholar 

  13. Liu, H., Guo, Y., Ma, Y., Lei, Y., Wen, G.: Semantic context encoding for accurate 3D point cloud segmentation. IEEE Trans. Multimedia 23, 2045–2055 (2020)

    Article  MATH  Google Scholar 

  14. Liu, Y., Cheng, D., Zhang, D., Xu, S., Han, J.: Capsule networks with residual pose routing. IEEE Trans. Neural Networks Learn. Syst. (2024)

    Google Scholar 

  15. Liu, Y., Zhang, D., Zhang, Q., Han, J.: Part-object relational visual saliency. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3688–3704 (2021)

    MATH  Google Scholar 

  16. Liu, Y., Zhang, Q., Zhang, D., Han, J.: Employing deep part-object relationships for salient object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1232–1241 (2019)

    Google Scholar 

  17. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  18. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  19. Qiu, S., Anwar, S., Barnes, N.: Geometric back-projection network for point cloud classification. IEEE Trans. Multimedia 24, 1943–1955 (2021)

    Article  MATH  Google Scholar 

  20. Shaban, A., Bansal, S., Liu, Z., Essa, I., Boots, B.: One-shot learning for semantic segmentation. arXiv preprint arXiv:1709.03410 (2017)

  21. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  22. Wang, K., Liew, J.H., Zou, Y., Zhou, D., Feng, J.: Panet: few-shot image semantic segmentation with prototype alignment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9197–9206 (2019)

    Google Scholar 

  23. Wang, Y., Li, W., Dai, D., Van Gool, L.: Deep domain adaptation by geodesic distance minimization. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2651–2657 (2017)

    Google Scholar 

  24. Wang, Y., et al.: Pillar-based object detection for autonomous driving. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 18–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_2

    Chapter  MATH  Google Scholar 

  25. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 1–12 (2019)

    Article  MATH  Google Scholar 

  26. Xu, S., Zhou, D., Fang, J., Yin, J., Bin, Z., Zhang, L.: Fusionpainting: multimodal fusion with adaptive attention for 3D object detection. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 3047–3054. IEEE (2021)

    Google Scholar 

  27. Yang, B., Liu, C., Li, B., Jiao, J., Ye, Q.: Prototype mixture models for few-shot semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 763–778. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_45

    Chapter  Google Scholar 

  28. Zhang, C., Lin, G., Liu, F., Yao, R., Shen, C.: Canet: class-agnostic segmentation networks with iterative refinement and attentive few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5217–5226 (2019)

    Google Scholar 

  29. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363. PMLR (2019)

    Google Scholar 

  30. Zhang, Q., Duanmu, M., Luo, Y., Liu, Y., Han, J.: Engaging part-whole hierarchies and contrast cues for salient object detection. IEEE Trans. Circuits Syst. Video Technol. 32(6), 3644–3658 (2021)

    Article  MATH  Google Scholar 

  31. Zhang, X., Wei, Y., Yang, Y., Huang, T.S.: SG-one: similarity guidance network for one-shot semantic segmentation. IEEE Trans. Cybern. 50(9), 3855–3865 (2020)

    Article  MATH  Google Scholar 

  32. Zhang, Y., Qu, Y., Xie, Y., Li, Z., Zheng, S., Li, C.: Perturbed self-distillation: weakly supervised large-scale point cloud semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15520–15528 (2021)

    Google Scholar 

  33. Zhao, H., Shi, S., Qi, X., Wang, X., Jia, J.: Point attention network for semantic segmentation of point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  34. Zhao, N., Chua, T.S., Lee, G.H.: Few-shot 3D point cloud semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8873–8882 (2021)

    Google Scholar 

  35. Zhou, D., et al.: Joint 3D instance segmentation and object detection for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1839–1849 (2020)

    Google Scholar 

  36. Zhou, Y., Zhang, Z., Zha, H., You, J.: Dynamic graph attention network for few-shot 3D point cloud semantic segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) (2021)

    Google Scholar 

  37. Zhu, G., Zhou, Y., Yao, R., Zhu, H.: Cross-class bias rectification for point cloud few-shot segmentation. IEEE Trans. Multimedia (2023)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of Jiangsu Province under Grant BK20221379; in part by the CNPC-CZU Innovation Alliance, Changzhou University, under Grant CCIA2023-01; and in part by the Changzhou Leading Innovative Talent Introduction & Cultivation Project 20221460. It is also supported by the Science and Technology Development Fund, Macao SAR under Grant 0004/2023/ITP1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z., Wu, G., Liu, Y. (2025). Prototype Enhancement for Few-Shot Point Cloud Semantic Segmentation. In: Zhu, T., Li, J., Castiglione, A. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2024. Lecture Notes in Computer Science, vol 15252. Springer, Singapore. https://doi.org/10.1007/978-981-96-1528-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-1528-5_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-1527-8

  • Online ISBN: 978-981-96-1528-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics