Skip to main content

Towards Information Sharing Beetle Antennae Search Optimization

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2024)

Abstract

The study of bioinformatics-based evolutionary computation has long been of significant interest within the scientific community. Beetle antennae search algorithm is widely used because of its lightweight, however, it lacks information sharing due to individual iteration in the algorithm. In this paper, we propose an innovative pheromone-based beetle antennae search algorithm, which evolves from a single iterative individual in BAS algorithm to multiple parallel iterative individuals and incorporates the pheromone sharing mechanism found in ant colony optimization algorithm. Applying the pheromone-based beetle antennae search algorithm to the virtual machine placement problem in cloud computing, we find that pheromone sharing mechanism allows the PB-BAS algorithm to exhibit superior optimization capabilities and effectively avoids convergence to local optimal. To verify the performance of the algorithm, we select other alternative algorithms and conduct a large number of comparative experiments under different experimental setups, the experimental results show the effectiveness and efficiency of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ivković, N., Kudelić, R., Golub, M.: Adjustable pheromone reinforcement strategies for problems with efficient heuristic information. Algorithms 16(5), 251 (2023)

    Article  Google Scholar 

  2. Wang, P., Li, G., Gao, Y.: A compensation method for gyroscope random drift based on unscented Kalman filter and support vector regression optimized by adaptive beetle antennae search algorithm. Appl. Intell. 53, 4350–4365 (2023)

    Article  MATH  Google Scholar 

  3. Chen, Q.-H., Wen, C.-Y.: Optimal resource allocation using genetic algorithm in container-based heterogeneous cloud. IEEE Access 12, 7413–7429 (2024)

    Article  MATH  Google Scholar 

  4. Farooq, H., Novikov, D., Juyal, A., Zelikovsky, A.: Genetic algorithm with evolutionary jumps. In: Guo, X., Mangul, S., Patterson, M., Zelikovsky, A. (eds.) ISBRA 2023. LNCS, vol. 14248, pp. 453–463. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-7074-2_36

    Chapter  MATH  Google Scholar 

  5. Liang, J., et al.: A survey on evolutionary constrained multiobjective optimization. IEEE Trans. Evol. Computat. 27(2), 201–221 (2023)

    Article  MATH  Google Scholar 

  6. Pham, V.H.S., Nguyen Dang, N.T.: Portia spider algorithm: an evolutionary computation approach for engineering application. Artif. Intell. Rev. 57(2), 24 (2024)

    Article  MATH  Google Scholar 

  7. Scianna, M.: The AddACO: a bio-inspired modified version of the ant colony optimization algorithm to solve travel salesman problems. Math. Comput. Simul. 218, 357–382 (2024)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hongjian, L., Jie, S., Lei, Z., et al.: Cost-efficient scheduling algorithms based on beetle antennae search for containerized applications in Kubernetes clouds. J. Supercomput. 79(9), 10300–10334 (2023)

    Article  MATH  Google Scholar 

  9. Çavdar, M.C., Korpeoglu, I., Ulusoy, Ö.: A utilization based genetic algorithm for virtual machine placement in cloud systems. Comput. Commun. 214, 136–148 (2024)

    Article  MATH  Google Scholar 

  10. Zakarya, M., Gillam, L., Salah, K., Rana, O., Tirunagari, S., Buyya, R.: CoLocateMe: aggregation-based, energy, performance and cost aware VM placement and consolidation in heterogeneous IaaS clouds. IEEE Trans. Serv. Comput. 16(2), 1023–1038 (2023)

    Article  Google Scholar 

  11. Bhaumik, S., et al.: NetStor: network and storage traffic management for ensuring application QoS in a hyperconverged data-center. IEEE Trans. Cloud Comput. 10(2), 1287–1300 (2022)

    Article  MATH  Google Scholar 

  12. Li, B., Cui, L., Hao, Z., Li, L., Liu, Y., Li, Y.: eHotSnap: an efficient and hot distributed snapshots system for virtual machine cluster. IEEE Trans. Parallel Distrib. Syst. 34(8), 2433–2447 (2023)

    Article  MATH  Google Scholar 

  13. Biçici, E.: A cloud monitor to reduce energy consumption with constrained optimization of server loads. IEEE Access 12, 25265–25277 (2024)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutong Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Wang, C., Liu, W., Zhang, L., Liu, X., Gao, Y. (2025). Towards Information Sharing Beetle Antennae Search Optimization. In: Zhu, T., Li, J., Castiglione, A. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2024. Lecture Notes in Computer Science, vol 15252. Springer, Singapore. https://doi.org/10.1007/978-981-96-1528-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-1528-5_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-1527-8

  • Online ISBN: 978-981-96-1528-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics