Skip to main content

High-Capacity Image Hiding via Compressible Invertible Neural Network

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2024)

Abstract

Image steganography involves the concealment of confidential information within images, rendering it undetectable to unauthorized observers, and subsequently retrieving the hidden information following secure transmission. Numerous investigations into image steganography employ invertible neural networks. Nevertheless, the intricate architecture of these models poses significant challenges to both their training and inference processes. Consequently, this paper proposes a high-capacity image steganography scheme utilizing compressible modules. We propose a multi-scale attention module that compresses the model structure through structural reparameterization post-training, thereby enhancing inference speed. Additionally, we employ a pre-trained image autoencoder to extract deep features from large-scale images, facilitating high-capacity steganography within invertible neural networks by concealing key features. Experimental results indicate that our approach offers superior image quality and model inference speed, while significantly enhancing security relative to existing methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mandal, P.C.: Digital image steganography: a literature survey. Inform. Sci. 609, 1451–1488 (2022)

    Article  MATH  Google Scholar 

  2. Katzenbeisser, S., Petitcolas, F.A.P.: Defining security in steganographic systems. In: Security and Watermarking of Multimedia Contents IV, pp. 50–56 (2002)

    Google Scholar 

  3. Johnson, N.F.: Information hiding: steganography and watermarking-attacks and countermeasures. J. Elect. Imag. 10(3), 825 (2001)

    Article  MATH  Google Scholar 

  4. Aghababaiyan, K.: Novel distortion free and histogram based data hiding scheme. IET Image Proc. 14(9), 1716–1725 (2020)

    Article  MATH  Google Scholar 

  5. Mielikainen, J.: LSB matching revisited. IEEE Sign. Proc. Let. 13(5), 285–287 (2006)

    Article  MATH  Google Scholar 

  6. Holub, V., Fridrich, J.: Designing steganographic distortion using directional filters. In: 2012 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 234–239 (2012)

    Google Scholar 

  7. Holub, V., Fridrich, J., Denemark, T.: Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Secur. 2014(1), 1–13 (2014). https://doi.org/10.1186/1687-417X-2014-1

    Article  MATH  Google Scholar 

  8. Baluja, S.: Hiding images in plain sight: deep steganography. In: Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 2069–2079 (2017)

    Google Scholar 

  9. Jing, J., Deng, X.: HiNet: deep image hiding by invertible network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4733–4742 (2021)

    Google Scholar 

  10. Guo, H., Xue, J.: The analysis of watermarking capacity of packing model and bits replacement model. In: 2016 12th World Congress on Intelligent Control and Automation (WCICA), pp. 2603–2607 (2016)

    Google Scholar 

  11. Duan, X.: Reversible image steganography scheme based on a U-net structure. IEEE Access 7, 9314–9323 (2019)

    Article  MATH  Google Scholar 

  12. Duan, X.: DUIANet: a double layer U-Net image hiding method based on improved inception module and attention mechanism. J. Vis. Comm. Image Rep. 98, 104035 (2023)

    Article  MATH  Google Scholar 

  13. Duan, X.: DHU-Net: high-capacity binary data hiding network based on improved U-Net. Neurocomputing 576(1), 127314 (2024)

    Article  MATH  Google Scholar 

  14. Kumar, A.: Encoder-Decoder architecture for image steganography using skip connections. Proc. Comp. Sci. 218(4), 1122–1131 (2023)

    Article  MATH  Google Scholar 

  15. Yao, Y.: High invisibility image steganography with wavelet transform and generative adversarial network. Exp. Syst. Appl. 249, 123540 (2024)

    Article  Google Scholar 

  16. Bui, T., Agarwal, S.: RoSteALS: robust steganography using autoencoder latent space. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 933–942 (2023)

    Google Scholar 

  17. Zhang, L.: Joint adjustment image steganography networks. Signal Process. Image Comm. 118, 117022 (2023)

    Article  Google Scholar 

  18. Li, Z.: Adversarial feature hybrid framework for steganography with shifted window local loss. Neur. Netw. 165, 358–369 (2023)

    Article  MATH  Google Scholar 

  19. Wang, Z.: Deep image steganography using Transformer and recursive permutation. Entropy 24(7), 878 (2022)

    Article  MATH  Google Scholar 

  20. Dinh, L.: Nice: non-linear independent components estimation. arXiv preprint arXiv:1410.8516 (2014)

  21. Liu, H.: Unpaired image super-resolution using a lightweight invertible neural network. Pattern Recogn. 144, 109822 (2023)

    Article  Google Scholar 

  22. Ardizzone, L.: Guided image generation with conditional invertible neural networks. arXiv preprint arXiv:1907.02392 (2019)

  23. Liu, L.: Lossless image steganography based on invertible neural networks. Entropy 24(12), 1762 (2022)

    Article  MATH  Google Scholar 

  24. Feng, Y., Liu, Y.: Image hide with invertible network and Swin Transformer. In: International Conference on Data Mining and Big Data, pp. 385–394 (2022)

    Google Scholar 

  25. Shang, F.: Robust data hiding for JPEG images with invertible neural network. Neur. Netw. 163, 219–232 (2023)

    Article  MATH  Google Scholar 

  26. Yang, H.: PRIS: practical robust invertible network for image steganography. Eng. Appl. Art. Intell. 133, 108419 (2024)

    Article  MATH  Google Scholar 

  27. Ding, X., Guo, Y.: ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1911–1920 (2019)

    Google Scholar 

  28. Ding, X., Guo, Y.: RepVGG: making VGG-style convnets great again. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13733–13742 (2021)

    Google Scholar 

  29. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Patt. Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  30. Woo, S., Park, J.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  31. Van Den Oord, A., Vinyals, O.: Neural discrete representation learning. In: Proceedings of Advances in Neural Information Processing Systems (NIPS), p. 30 (2017)

    Google Scholar 

  32. Ma, K.: Reversible data hiding in encrypted images by reserving room before encryption. IEEE Trans. Inform. Foren. Secur. 8(3), 553–562 (2013)

    Article  MATH  Google Scholar 

  33. Liu, D.: A fusion-domain color image watermarking based on Haar transform and image correction. Expert Syst. Appl. 170, 114540 (2021)

    Article  MATH  Google Scholar 

  34. Zhu, J., Kaplan, R.: Hidden: hiding data with deep networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 657–672 (2018)

    Google Scholar 

  35. Boehm, B.: Stegexpose - a tool for detecting LSB steganography. arXiv preprint arXiv:1410.6656 (2014)

  36. Boroumand, M.: Deep residual network for steganalysis of digital images. IEEE Trans. Inform. Foren. Secur. 14(5), 1181–1193 (2018)

    Article  MATH  Google Scholar 

  37. Baluja, S.: Hiding images within images. IEEE Trans. Patt. Anal. Mach. Intell. 42(7), 1685–1697 (2019)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China under Grant 62462012, and Science and Technology Program of Hebei under Grant 22567606H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangwei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, C., Shi, H., Li, Q., Zhao, D., Wang, F. (2025). High-Capacity Image Hiding via Compressible Invertible Neural Network. In: Zhu, T., Li, J., Castiglione, A. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2024. Lecture Notes in Computer Science, vol 15252. Springer, Singapore. https://doi.org/10.1007/978-981-96-1528-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-1528-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-1527-8

  • Online ISBN: 978-981-96-1528-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics