Skip to main content

Simple Perturbations Subvert Ethereum Phishing Transactions Detection: An Empirical Analysis

  • Conference paper
  • First Online:
Information Security Applications (WISA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15499))

Included in the following conference series:

  • 6 Accesses

Abstract

This paper explores the vulnerability of machine learning models, specifically Random Forest, Decision Tree, and K-Nearest Neighbors, to very simple single-feature adversarial attacks in the context of Ethereum fraudulent transaction detection. Through comprehensive experimentation, we investigate the impact of various adversarial attack strategies on model performance metrics, such as accuracy, precision, recall, and F1-score. Our findings, highlighting how prone those techniques are to simple attacks, are alarming, and the inconsistency in the attacks’ effect on different algorithms promises ways for attack mitigation. We examine the effectiveness of different mitigation strategies, including adversarial training and enhanced feature selection, in enhancing model robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abusnaina, A., et al.: DL-FHMC: deep learning-based fine-grained hierarchical learning approach for robust malware classification. IEEE Trans. Dependable Secur. Comput. 19(5), 3432–3447 (2022)

    Article  MATH  Google Scholar 

  2. Abusnaina, A., et al.: Systematically evaluating the robustness of ml-based IoT malware detection systems. In: 25th International Symposium on Research in Attacks, Intrusions and Defenses, RAID, pp. 308–320. ACM (2022)

    Google Scholar 

  3. Abusnaina, A., Jang, R., Khormali, A., Nyang, D., Mohaisen, D.: DFD: adversarial learning-based approach to defend against website fingerprinting. In: 39th IEEE Conference on Computer Communications, INFOCOM, pp. 2459–2468. IEEE (2020)

    Google Scholar 

  4. Abusnaina, A., Khormali, A., Alasmary, H., Park, J., Anwar, A., Mohaisen, A.: Adversarial learning attacks on graph-based IoT malware detection systems. In: 39th IEEE International Conference on Distributed Computing Systems, ICDCS, pp. 1296–1305. IEEE (2019)

    Google Scholar 

  5. Abusnaina, A., et al.: Adversarial example detection using latent neighborhood graph. In: IEEE/CVF International Conference on Computer Vision, ICCV, pp. 7667–7676. (2021)

    Google Scholar 

  6. Agarwal, R., Thapliyal, T., Shukla, S.K.: Analyzing malicious activities and detecting adversarial behavior in cryptocurrency based permissionless blockchains: an ethereum usecase. Distributed Ledger Technol. Res. Pract. 1(2), 1–21 (2022)

    Article  MATH  Google Scholar 

  7. Al-E’mari, S., Anbar, M., Sanjalawe, Y., Manickam, S.: A labeled transactions-based dataset on the ethereum network. In: Anbar, M., Abdullah, N., Manickam, S. (eds.) ACeS 2020. CCIS, vol. 1347, pp. 61–79. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-6835-4_5

    Chapter  Google Scholar 

  8. Alasmary, H., Abusnaina, A., Jang, R., Abuhamad, M., Anwar, A., Nyang, D., Mohaisen, D.: Soteria: Detecting adversarial examples in control flow graph-based malware classifiers. In: 40th IEEE International Conference on Distributed Computing Systems, ICDCS. pp. 888–898. IEEE (2020)

    Google Scholar 

  9. Ba, H.: Improving Detection of Credit Card Fraudulent Transactions using Generative Adversarial Networks. CoRR abs/1907.03355 (2019)

    Google Scholar 

  10. Bhagoji, A.N., He, W., Li, B., Song, D.: Practical black-box attacks on deep neural networks using efficient query mechanisms. In: ECCV, vol. 11216, pp. 158–174 (2018)

    Google Scholar 

  11. Carmon, Y., Raghunathan, A., Schmidt, L., Duchi, J.C., Liang, P.: Unlabeled data improves adversarial robustness. In: NeurIPS, pp. 11190–11201 (2019)

    Google Scholar 

  12. Cartella, F., Anunciação, O., Funabiki, Y., Yamaguchi, D., Akishita, T., Elshocht, O.: Adversarial attacks for tabular data: application to fraud detection and imbalanced data. In: SafeAI, vol. 2808. CEUR-WS.org (2021)

    Google Scholar 

  13. Chen, H., Zhang, H., Boning, D.S., Hsieh, C.: Robust decision trees against adversarial examples. In: ICML, vol. 97, pp. 1122–1131. PMLR (2019)

    Google Scholar 

  14. Cohen, J., Rosenfeld, E., Kolter, J.Z.: Certified adversarial robustness via randomized smoothing. In: ICML, vol. 97, pp. 1310–1320. PMLR (2019)

    Google Scholar 

  15. Croce, F., et al.: RobustBench: a standardized adversarial robustness benchmark. In: NeurIPS (2021)

    Google Scholar 

  16. Ding, Y., Wang, L., Zhang, H., Yi, J., Fan, D., Gong, B.: Defending against adversarial attacks using random forest. In: CVPR Workshops, pp. 105–114 (2019)

    Google Scholar 

  17. Fursov, I., et al.: Adversarial attacks on deep models for financial transaction records. In: KDD, pp. 2868–2878. ACM (2021)

    Google Scholar 

  18. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: ICLR (2015)

    Google Scholar 

  19. Guo, Q., et al.: Securing the deep fraud detector in large-scale e-commerce platform via adversarial machine learning approach. In: WWW, pp. 616–626. ACM (2019)

    Google Scholar 

  20. de Juan Fidalgo, P., Camara, C., Peris-Lopez, P.: Generation and classification of illicit bitcoin transactions. In: UCAmI, vol. 594, pp. 1086–1097. Springer, Cham (2022)

    Google Scholar 

  21. Kabla, A.H.H., Anbar, M., Manickam, S., Karuppayah, S.: Eth-PSD: a machine learning-based phishing scam detection approach in ethereum. IEEE Access 10, 118043–118057 (2022)

    Article  Google Scholar 

  22. Li, D., Chen, D., Goh, J., Ng, S.: Anomaly Detection with Generative Adversarial Networks for Multivariate Time Series. CoRR abs/1809.04758 (2018)

    Google Scholar 

  23. Li, X., Chen, Y., He, Y., Xue, H.: AdvKnn: Adversarial Attacks On K-Nearest Neighbor Classifiers With Approximate Gradients. CoRR abs/1911.06591 (2019)

    Google Scholar 

  24. Mozo, A., González-Prieto, Á., Perales, A.P., Canaval, S.G., Talavera, E.: Synthetic flow-based cryptomining attack generation through Adversarial Networks. CoRR abs/2107.14776 (2021)

    Google Scholar 

  25. Narodytska, N., Kasiviswanathan, S.P.: Simple black-box adversarial attacks on deep neural networks. In: CVPR Workshops, pp. 1310–1318 (2017)

    Google Scholar 

  26. Ngo, C.P., Winarto, A.A., Kou, C.K.L., Park, S., Akram, F., Lee, H.K.: Fence GAN: towards better anomaly detection. In: ICTAI, pp. 141–148. IEEE (2019)

    Google Scholar 

  27. Oliveira, V.C., et al.: Analyzing transaction confirmation in ethereum using machine learning techniques. SIGMETRICS Perform. Evaluation Rev. 48(4), 12–15 (2021)

    Article  MATH  Google Scholar 

  28. Papernot, N., McDaniel, P.D., Wu, X., Jha, S., Swami, A.: Distillation as a defense to adversarial perturbations against deep neural networks. In: IEEE Symposium on Security and Privacy, pp. 582–597 (2016)

    Google Scholar 

  29. Rabieinejad, E., Yazdinejad, A., Parizi, R.M., Dehghantanha, A.: Generative adversarial networks for cyber threat hunting in ethereum blockchain. Distributed Ledger Technol. Res. Pract. 2(2), 1–19 (2023)

    Article  Google Scholar 

  30. Sanjalawe, Y.K., Al-Emari, S.: Abnormal transactions detection in the ethereum network using semi-supervised generative adversarial networks. IEEE Access 11, 98516–98531 (2023)

    Article  Google Scholar 

  31. Shu, D., Leslie, N.O., Kamhoua, C.A., Tucker, C.S.: Generative adversarial attacks against intrusion detection systems using active learning. In: WiseML@WiSec, pp. 1–6. ACM (2020)

    Google Scholar 

  32. Silva, S.H., Najafirad, P.: Opportunities and Challenges in Deep Learning Adversarial Robustness: A Survey. CoRR abs/2007.00753 (2020)

    Google Scholar 

  33. Singh, H.J., Hafid, A.S.: Prediction of transaction confirmation time in ethereum blockchain using machine learning. In: Blockchain, vol. 1010, pp. 126–133 (2019)

    Google Scholar 

  34. Stutz, D., Hein, M., Schiele, B.: Disentangling adversarial robustness and generalization. In: CVPR, pp. 6976–6987 (2019)

    Google Scholar 

  35. Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (2014)

    Google Scholar 

  36. Xie, C., Wu, Y., van der Maaten, L., Yuille, A.L., He, K.: Feature denoising for improving adversarial robustness. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 501–509. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  37. Yang, J., Li, T., Liang, G., Wang, Y., Gao, T., Zhu, F.: Spam transaction attack detection model based on GRU and WGAN-div. Comput. Commun. 161, 172–182 (2020)

    Article  MATH  Google Scholar 

  38. Zola, F., Bruse, J.L., Barrio, X.E., Galar, M., Urrutia, R.O.: Generative adversarial networks for bitcoin data augmentation. In: BRAINS, pp. 136–143. IEEE (2020)

    Google Scholar 

  39. Zola, F., Segurola-Gil, L., Bruse, J.L., Galar, M., Urrutia, R.O.: Attacking bitcoin anonymity: generative adversarial networks for improving bitcoin entity classification. Appl. Intell. 52(15), 17289–17314 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahod Alghureid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alghureid, A., Mohaisen, D. (2025). Simple Perturbations Subvert Ethereum Phishing Transactions Detection: An Empirical Analysis. In: Lee, JH., Emura, K., Lee, S. (eds) Information Security Applications. WISA 2024. Lecture Notes in Computer Science, vol 15499. Springer, Singapore. https://doi.org/10.1007/978-981-96-1624-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-1624-4_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-1623-7

  • Online ISBN: 978-981-96-1624-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics