Abstract
This paper explores the vulnerability of machine learning models, specifically Random Forest, Decision Tree, and K-Nearest Neighbors, to very simple single-feature adversarial attacks in the context of Ethereum fraudulent transaction detection. Through comprehensive experimentation, we investigate the impact of various adversarial attack strategies on model performance metrics, such as accuracy, precision, recall, and F1-score. Our findings, highlighting how prone those techniques are to simple attacks, are alarming, and the inconsistency in the attacks’ effect on different algorithms promises ways for attack mitigation. We examine the effectiveness of different mitigation strategies, including adversarial training and enhanced feature selection, in enhancing model robustness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Abusnaina, A., et al.: DL-FHMC: deep learning-based fine-grained hierarchical learning approach for robust malware classification. IEEE Trans. Dependable Secur. Comput. 19(5), 3432–3447 (2022)
Abusnaina, A., et al.: Systematically evaluating the robustness of ml-based IoT malware detection systems. In: 25th International Symposium on Research in Attacks, Intrusions and Defenses, RAID, pp. 308–320. ACM (2022)
Abusnaina, A., Jang, R., Khormali, A., Nyang, D., Mohaisen, D.: DFD: adversarial learning-based approach to defend against website fingerprinting. In: 39th IEEE Conference on Computer Communications, INFOCOM, pp. 2459–2468. IEEE (2020)
Abusnaina, A., Khormali, A., Alasmary, H., Park, J., Anwar, A., Mohaisen, A.: Adversarial learning attacks on graph-based IoT malware detection systems. In: 39th IEEE International Conference on Distributed Computing Systems, ICDCS, pp. 1296–1305. IEEE (2019)
Abusnaina, A., et al.: Adversarial example detection using latent neighborhood graph. In: IEEE/CVF International Conference on Computer Vision, ICCV, pp. 7667–7676. (2021)
Agarwal, R., Thapliyal, T., Shukla, S.K.: Analyzing malicious activities and detecting adversarial behavior in cryptocurrency based permissionless blockchains: an ethereum usecase. Distributed Ledger Technol. Res. Pract. 1(2), 1–21 (2022)
Al-E’mari, S., Anbar, M., Sanjalawe, Y., Manickam, S.: A labeled transactions-based dataset on the ethereum network. In: Anbar, M., Abdullah, N., Manickam, S. (eds.) ACeS 2020. CCIS, vol. 1347, pp. 61–79. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-6835-4_5
Alasmary, H., Abusnaina, A., Jang, R., Abuhamad, M., Anwar, A., Nyang, D., Mohaisen, D.: Soteria: Detecting adversarial examples in control flow graph-based malware classifiers. In: 40th IEEE International Conference on Distributed Computing Systems, ICDCS. pp. 888–898. IEEE (2020)
Ba, H.: Improving Detection of Credit Card Fraudulent Transactions using Generative Adversarial Networks. CoRR abs/1907.03355 (2019)
Bhagoji, A.N., He, W., Li, B., Song, D.: Practical black-box attacks on deep neural networks using efficient query mechanisms. In: ECCV, vol. 11216, pp. 158–174 (2018)
Carmon, Y., Raghunathan, A., Schmidt, L., Duchi, J.C., Liang, P.: Unlabeled data improves adversarial robustness. In: NeurIPS, pp. 11190–11201 (2019)
Cartella, F., Anunciação, O., Funabiki, Y., Yamaguchi, D., Akishita, T., Elshocht, O.: Adversarial attacks for tabular data: application to fraud detection and imbalanced data. In: SafeAI, vol. 2808. CEUR-WS.org (2021)
Chen, H., Zhang, H., Boning, D.S., Hsieh, C.: Robust decision trees against adversarial examples. In: ICML, vol. 97, pp. 1122–1131. PMLR (2019)
Cohen, J., Rosenfeld, E., Kolter, J.Z.: Certified adversarial robustness via randomized smoothing. In: ICML, vol. 97, pp. 1310–1320. PMLR (2019)
Croce, F., et al.: RobustBench: a standardized adversarial robustness benchmark. In: NeurIPS (2021)
Ding, Y., Wang, L., Zhang, H., Yi, J., Fan, D., Gong, B.: Defending against adversarial attacks using random forest. In: CVPR Workshops, pp. 105–114 (2019)
Fursov, I., et al.: Adversarial attacks on deep models for financial transaction records. In: KDD, pp. 2868–2878. ACM (2021)
Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: ICLR (2015)
Guo, Q., et al.: Securing the deep fraud detector in large-scale e-commerce platform via adversarial machine learning approach. In: WWW, pp. 616–626. ACM (2019)
de Juan Fidalgo, P., Camara, C., Peris-Lopez, P.: Generation and classification of illicit bitcoin transactions. In: UCAmI, vol. 594, pp. 1086–1097. Springer, Cham (2022)
Kabla, A.H.H., Anbar, M., Manickam, S., Karuppayah, S.: Eth-PSD: a machine learning-based phishing scam detection approach in ethereum. IEEE Access 10, 118043–118057 (2022)
Li, D., Chen, D., Goh, J., Ng, S.: Anomaly Detection with Generative Adversarial Networks for Multivariate Time Series. CoRR abs/1809.04758 (2018)
Li, X., Chen, Y., He, Y., Xue, H.: AdvKnn: Adversarial Attacks On K-Nearest Neighbor Classifiers With Approximate Gradients. CoRR abs/1911.06591 (2019)
Mozo, A., González-Prieto, Á., Perales, A.P., Canaval, S.G., Talavera, E.: Synthetic flow-based cryptomining attack generation through Adversarial Networks. CoRR abs/2107.14776 (2021)
Narodytska, N., Kasiviswanathan, S.P.: Simple black-box adversarial attacks on deep neural networks. In: CVPR Workshops, pp. 1310–1318 (2017)
Ngo, C.P., Winarto, A.A., Kou, C.K.L., Park, S., Akram, F., Lee, H.K.: Fence GAN: towards better anomaly detection. In: ICTAI, pp. 141–148. IEEE (2019)
Oliveira, V.C., et al.: Analyzing transaction confirmation in ethereum using machine learning techniques. SIGMETRICS Perform. Evaluation Rev. 48(4), 12–15 (2021)
Papernot, N., McDaniel, P.D., Wu, X., Jha, S., Swami, A.: Distillation as a defense to adversarial perturbations against deep neural networks. In: IEEE Symposium on Security and Privacy, pp. 582–597 (2016)
Rabieinejad, E., Yazdinejad, A., Parizi, R.M., Dehghantanha, A.: Generative adversarial networks for cyber threat hunting in ethereum blockchain. Distributed Ledger Technol. Res. Pract. 2(2), 1–19 (2023)
Sanjalawe, Y.K., Al-Emari, S.: Abnormal transactions detection in the ethereum network using semi-supervised generative adversarial networks. IEEE Access 11, 98516–98531 (2023)
Shu, D., Leslie, N.O., Kamhoua, C.A., Tucker, C.S.: Generative adversarial attacks against intrusion detection systems using active learning. In: WiseML@WiSec, pp. 1–6. ACM (2020)
Silva, S.H., Najafirad, P.: Opportunities and Challenges in Deep Learning Adversarial Robustness: A Survey. CoRR abs/2007.00753 (2020)
Singh, H.J., Hafid, A.S.: Prediction of transaction confirmation time in ethereum blockchain using machine learning. In: Blockchain, vol. 1010, pp. 126–133 (2019)
Stutz, D., Hein, M., Schiele, B.: Disentangling adversarial robustness and generalization. In: CVPR, pp. 6976–6987 (2019)
Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (2014)
Xie, C., Wu, Y., van der Maaten, L., Yuille, A.L., He, K.: Feature denoising for improving adversarial robustness. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 501–509. Computer Vision Foundation/IEEE (2019)
Yang, J., Li, T., Liang, G., Wang, Y., Gao, T., Zhu, F.: Spam transaction attack detection model based on GRU and WGAN-div. Comput. Commun. 161, 172–182 (2020)
Zola, F., Bruse, J.L., Barrio, X.E., Galar, M., Urrutia, R.O.: Generative adversarial networks for bitcoin data augmentation. In: BRAINS, pp. 136–143. IEEE (2020)
Zola, F., Segurola-Gil, L., Bruse, J.L., Galar, M., Urrutia, R.O.: Attacking bitcoin anonymity: generative adversarial networks for improving bitcoin entity classification. Appl. Intell. 52(15), 17289–17314 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Alghureid, A., Mohaisen, D. (2025). Simple Perturbations Subvert Ethereum Phishing Transactions Detection: An Empirical Analysis. In: Lee, JH., Emura, K., Lee, S. (eds) Information Security Applications. WISA 2024. Lecture Notes in Computer Science, vol 15499. Springer, Singapore. https://doi.org/10.1007/978-981-96-1624-4_10
Download citation
DOI: https://doi.org/10.1007/978-981-96-1624-4_10
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-1623-7
Online ISBN: 978-981-96-1624-4
eBook Packages: Computer ScienceComputer Science (R0)