Abstract
In the field of cybersecurity, the deluge of alerts presents a significant challenge to human review capabilities. Despite existing solutions, there is still an urgent need for more advanced methods to improve the effectiveness and accuracy of false alerts filtering. In this paper, we propose FAF-BM, a cutting-edge approach that integrates the BERT model, semi-supervised learning and active learning to enhance alert filtering capabilities. FAF-BM leverages the fine-tuned BERT model to fully exploit the deep semantics of alerts without being constrained by the format of the alerts. Subsequently, the semi-supervised learning is dedicated to mining the hidden potential within unlabeled data, thus expanding the learning scope beyond the confines of labeled datasets. In addition, the active learning strategically utilizes the expertise of security professionals to guide the learning process, ensuring that the approach adapts to the evolving threat landscape. Through a series of experiments, it has been demonstrated that FAF-BM not only improves the effectiveness of the filter but also enhances the generalization ability of dealing with the heterogeneity of alerts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Abouabdalla, O., El-Taj, H., Manasrah, A., Ramadass, S.: False positive reduction in intrusion detection system: a survey. In: 2009 2nd IEEE International Conference on Broadband Network & Multimedia Technology, pp. 463–466. IEEE, Beijing, China (2009)
Abu Afza, A.J.M., Uddin, M.S.: Intrusion detection learning algorithm through network mining. In: 16th International Conference on Computer and Information Technology, pp. 490–495. IEEE, Khulna (2014)
Alahmadi, B.A., Axon, L., Martinovic, I.: 99% false positives: a qualitative study of soc analysts’ perspectives on security alarms, pp. 2783–2800 (2022)
Almgren, M., Jonsson, E.: Using active learning in intrusion detection. In: Proceedings. 17th IEEE Computer Security Foundations Workshop, 2004, pp. 88–98. IEEE, Pacific Grove, CA, USA (2004)
Ban, T., Takahashi, T., Ndichu, E.A.: Breaking alert fatigue: AI-assisted SIEM framework for effective incident response. Appl. Sci. 13(11), 6610 (2023)
Behera, S.K., Dash, R.: Fine-tuning of a BERT-based uncased model for unbalanced text classification. In: Mohanty, M.N., Das, S. (eds.) Advances in Intelligent Computing and Communication, pp. 377–384. Springer Nature, Singapore (2022)
Chiu, C.-Y., Lee, Y.-J., Chang, C.-C., Luo, W.-Y., Huang, H.-C.: Semi-supervised learning for false alarm reduction. In: Perner, P. (ed.) ICDM 2010. LNCS (LNAI), vol. 6171, pp. 595–605. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14400-4_46
De Alvarenga, S.C., Barbon, S., Miani, R.S., et al., C.: Process mining and hierarchical clustering to help intrusion alert visualization. Comput. Secur. 73, 474–491 (2018)
Devlin, J., Chang, et al.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019)
Doak, J.E., Ingram, J., Shelburg, J., Johnson, J., Rohrer, B.R.: Active learning for alert triage. In: 2013 12th International Conference on Machine Learning and Applications, pp. 34–39. IEEE, Miami, FL, USA (2013)
Ede, T.V., et al.: DEEPCASE: semi-supervised contextual analysis of security events. In: 2022 IEEE Symposium on Security and Privacy (SP), pp. 522–539. IEEE, San Francisco, CA, USA (2022)
Fang, Y., et al.: EVA: Exploring the Limits of Masked Visual Representation Learning at Scale, pp. 19358–19369 (2023)
Hubballi, N., Suryanarayanan, V.: False alarm minimization techniques in signature-based intrusion detection systems: a survey. Comput. Commun. 49, 1–17 (2014)
Jazzar, M., Jantan, A.B.: Using fuzzy cognitive maps to reduce false alerts in SOM-based intrusion detection sensors. In: 2008 Second Asia International Conference on Modelling & Simulation (AMS), pp. 1054–1060. IEEE (2008)
Landauer, M., Skopik, F., Frank, M., Hotwagner, W., Wurzenberger, M., Rauber, A.: Maintainable log datasets for evaluation of intrusion detection systems. IEEE Trans. Dependable Secure Comput. 20(4), 3466–3482 (2023)
Landauer, M., Skopik, F., Wurzenberger, M.: Introducing a New Alert Data Set for Multi-Step Attack Analysis, August 2023. http://arxiv.org/abs/2308.12627
Law, K.H., Kwok, L.F.: IDS false alarm filtering using KNN classifier. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 114–121. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31815-6_10
Li, G., Yan, Z., Fu, Y., Chen, H.: Data fusion for network intrusion detection: a review. Secur. Commun. Netw. 2018, 1–16 (2018)
Li, H., et al.: Learning adaptive criteria weights for active semi-supervised learning. Inf. Sci. 561, 286–303 (2021)
Li, W., Meng, W., Luo, X., Kwok, L.F.: MVPSys : toward practical multi-view based false alarm reduction system in network intrusion detection. Comput. Secur. 60, 177–192 (2016)
Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, E.A.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023)
Liu, J., Li, S., Zhang, R.: Algorithm of reducing the false positives in IDS based on correlation analysis. In: IOP Conference Series: Materials Science and Engineering, vol. 322, p. 062016 (2018)
Meng, Y., Kwok, L.: Intrusion detection using disagreement-based semi-supervised learning: detection enhancement and false alarm reduction. In: Xiang, Y., Lopez, J., Kuo, C.-C.J., Zhou, W. (eds.) CSS 2012. LNCS, vol. 7672, pp. 483–497. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35362-8_36
Meng, Y., Kwok, L.-F.: Enhancing false alarm reduction using pool-based active learning in network intrusion detection. In: Deng, R.H., Feng, T. (eds.) ISPEC 2013. LNCS, vol. 7863, pp. 1–15. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38033-4_1
Meng, Y., Kwok, L.F.: Adaptive non-critical alarm reduction using hash-based contextual signatures in intrusion detection. Comput. Commun. 38, 50–59 (2014)
MIT Lincoln Laboratory: Darpa lldos 1.0 (2000). https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-datasets. Accessed 07 Apr 2024
Pietraszek, T.: Using adaptive alert classification to reduce false positives in intrusion detection. In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 102–124. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30143-1_6
Settles, B.: Active learning literature survey (2009)
Shon, H.G., Lee, Y., Yoon, M.: Semi-supervised alert filtering for network security. Electronics 12(23), 4755 (2023)
Tharwat, A., Schenck, W.: A survey on active learning: state-of-the-art. Pract. Chall. Res. Dir. Math. 11(4), 820 (2023)
Vu, Q.H., Ruta, D., Cen, L.: Gradient boosting decision trees for cyber security threats detection based on network events logs. In: 2019 IEEE International Conference on Big Data, pp. 5921–5928. IEEE, Los Angeles, CA, USA (2019)
Wang, T., Zhang, C., Lu, Z., Du, D., Han, Y.: Identifying truly suspicious events and false alarms based on alert graph. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 5929–5936. IEEE, Los Angeles, CA, USA (2019)
Wang, X., Yang, X., Liang, X., Zhang, X., Zhang, W., Gong, X.: Combating alert fatigue with AlertPro: context-aware alert prioritization using reinforcement learning for multi-step attack detection. Comput. Secur. 137, 103583 (2023)
Wang, Y., Chen, H., Heng, Q., et al.: FreeMatch: self-adaptive thresholding for semi-supervised learning (2023). http://arxiv.org/abs/2205.07246
Yuan, Z., et al.: DualTeacher: bridging coexistence of unlabelled classes for semi-supervised incremental object detection (2023). http://arxiv.org/abs/2401.05362
Zhao, X., Greenberg, J., An, Y., Hu, X.T.: Fine-tuning BERT model for materials named entity recognition. In: 2021 IEEE International Conference on Big Data (Big Data), pp. 3717–3720. IEEE, Orlando, FL, USA (2021)
Acknowledgments
This study is funded by science and technology project of the headquarters of State Grid Corporation of China (Research and Application of Network Security Situation Awareness Technology Based on Knowledge Graph, Project Code: 5700-202352606A-3-2-ZN). It also receives support from the Key Laboratory of Network Assessment Technology at the Chinese Academy of Sciences, and the Beijing Key Laboratory of Network Security and Protection Technology.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Du, D. et al. (2025). FAF-BM: An Approach for False Alerts Filtering Using BERT Model with Semi-supervised Active Learning. In: Zhao, J., Meng, W. (eds) Science of Cyber Security. SciSec 2024. Lecture Notes in Computer Science, vol 15441. Springer, Singapore. https://doi.org/10.1007/978-981-96-2417-1_16
Download citation
DOI: https://doi.org/10.1007/978-981-96-2417-1_16
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-2416-4
Online ISBN: 978-981-96-2417-1
eBook Packages: Computer ScienceComputer Science (R0)