Skip to main content

FAF-BM: An Approach for False Alerts Filtering Using BERT Model with Semi-supervised Active Learning

  • Conference paper
  • First Online:
Science of Cyber Security (SciSec 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15441))

Included in the following conference series:

  • 143 Accesses

Abstract

In the field of cybersecurity, the deluge of alerts presents a significant challenge to human review capabilities. Despite existing solutions, there is still an urgent need for more advanced methods to improve the effectiveness and accuracy of false alerts filtering. In this paper, we propose FAF-BM, a cutting-edge approach that integrates the BERT model, semi-supervised learning and active learning to enhance alert filtering capabilities. FAF-BM leverages the fine-tuned BERT model to fully exploit the deep semantics of alerts without being constrained by the format of the alerts. Subsequently, the semi-supervised learning is dedicated to mining the hidden potential within unlabeled data, thus expanding the learning scope beyond the confines of labeled datasets. In addition, the active learning strategically utilizes the expertise of security professionals to guide the learning process, ensuring that the approach adapts to the evolving threat landscape. Through a series of experiments, it has been demonstrated that FAF-BM not only improves the effectiveness of the filter but also enhances the generalization ability of dealing with the heterogeneity of alerts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abouabdalla, O., El-Taj, H., Manasrah, A., Ramadass, S.: False positive reduction in intrusion detection system: a survey. In: 2009 2nd IEEE International Conference on Broadband Network & Multimedia Technology, pp. 463–466. IEEE, Beijing, China (2009)

    Google Scholar 

  2. Abu Afza, A.J.M., Uddin, M.S.: Intrusion detection learning algorithm through network mining. In: 16th International Conference on Computer and Information Technology, pp. 490–495. IEEE, Khulna (2014)

    Google Scholar 

  3. Alahmadi, B.A., Axon, L., Martinovic, I.: 99% false positives: a qualitative study of soc analysts’ perspectives on security alarms, pp. 2783–2800 (2022)

    Google Scholar 

  4. Almgren, M., Jonsson, E.: Using active learning in intrusion detection. In: Proceedings. 17th IEEE Computer Security Foundations Workshop, 2004, pp. 88–98. IEEE, Pacific Grove, CA, USA (2004)

    Google Scholar 

  5. Ban, T., Takahashi, T., Ndichu, E.A.: Breaking alert fatigue: AI-assisted SIEM framework for effective incident response. Appl. Sci. 13(11), 6610 (2023)

    Google Scholar 

  6. Behera, S.K., Dash, R.: Fine-tuning of a BERT-based uncased model for unbalanced text classification. In: Mohanty, M.N., Das, S. (eds.) Advances in Intelligent Computing and Communication, pp. 377–384. Springer Nature, Singapore (2022)

    Google Scholar 

  7. Chiu, C.-Y., Lee, Y.-J., Chang, C.-C., Luo, W.-Y., Huang, H.-C.: Semi-supervised learning for false alarm reduction. In: Perner, P. (ed.) ICDM 2010. LNCS (LNAI), vol. 6171, pp. 595–605. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14400-4_46

    Chapter  MATH  Google Scholar 

  8. De Alvarenga, S.C., Barbon, S., Miani, R.S., et al., C.: Process mining and hierarchical clustering to help intrusion alert visualization. Comput. Secur. 73, 474–491 (2018)

    Google Scholar 

  9. Devlin, J., Chang, et al.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019)

    Google Scholar 

  10. Doak, J.E., Ingram, J., Shelburg, J., Johnson, J., Rohrer, B.R.: Active learning for alert triage. In: 2013 12th International Conference on Machine Learning and Applications, pp. 34–39. IEEE, Miami, FL, USA (2013)

    Google Scholar 

  11. Ede, T.V., et al.: DEEPCASE: semi-supervised contextual analysis of security events. In: 2022 IEEE Symposium on Security and Privacy (SP), pp. 522–539. IEEE, San Francisco, CA, USA (2022)

    Google Scholar 

  12. Fang, Y., et al.: EVA: Exploring the Limits of Masked Visual Representation Learning at Scale, pp. 19358–19369 (2023)

    Google Scholar 

  13. Hubballi, N., Suryanarayanan, V.: False alarm minimization techniques in signature-based intrusion detection systems: a survey. Comput. Commun. 49, 1–17 (2014)

    Article  MATH  Google Scholar 

  14. Jazzar, M., Jantan, A.B.: Using fuzzy cognitive maps to reduce false alerts in SOM-based intrusion detection sensors. In: 2008 Second Asia International Conference on Modelling & Simulation (AMS), pp. 1054–1060. IEEE (2008)

    Google Scholar 

  15. Landauer, M., Skopik, F., Frank, M., Hotwagner, W., Wurzenberger, M., Rauber, A.: Maintainable log datasets for evaluation of intrusion detection systems. IEEE Trans. Dependable Secure Comput. 20(4), 3466–3482 (2023)

    Article  MATH  Google Scholar 

  16. Landauer, M., Skopik, F., Wurzenberger, M.: Introducing a New Alert Data Set for Multi-Step Attack Analysis, August 2023. http://arxiv.org/abs/2308.12627

  17. Law, K.H., Kwok, L.F.: IDS false alarm filtering using KNN classifier. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 114–121. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31815-6_10

    Chapter  MATH  Google Scholar 

  18. Li, G., Yan, Z., Fu, Y., Chen, H.: Data fusion for network intrusion detection: a review. Secur. Commun. Netw. 2018, 1–16 (2018)

    MATH  Google Scholar 

  19. Li, H., et al.: Learning adaptive criteria weights for active semi-supervised learning. Inf. Sci. 561, 286–303 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, W., Meng, W., Luo, X., Kwok, L.F.: MVPSys : toward practical multi-view based false alarm reduction system in network intrusion detection. Comput. Secur. 60, 177–192 (2016)

    Google Scholar 

  21. Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, E.A.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023)

    Google Scholar 

  22. Liu, J., Li, S., Zhang, R.: Algorithm of reducing the false positives in IDS based on correlation analysis. In: IOP Conference Series: Materials Science and Engineering, vol. 322, p. 062016 (2018)

    Google Scholar 

  23. Meng, Y., Kwok, L.: Intrusion detection using disagreement-based semi-supervised learning: detection enhancement and false alarm reduction. In: Xiang, Y., Lopez, J., Kuo, C.-C.J., Zhou, W. (eds.) CSS 2012. LNCS, vol. 7672, pp. 483–497. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35362-8_36

    Chapter  MATH  Google Scholar 

  24. Meng, Y., Kwok, L.-F.: Enhancing false alarm reduction using pool-based active learning in network intrusion detection. In: Deng, R.H., Feng, T. (eds.) ISPEC 2013. LNCS, vol. 7863, pp. 1–15. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38033-4_1

    Chapter  MATH  Google Scholar 

  25. Meng, Y., Kwok, L.F.: Adaptive non-critical alarm reduction using hash-based contextual signatures in intrusion detection. Comput. Commun. 38, 50–59 (2014)

    Article  MATH  Google Scholar 

  26. MIT Lincoln Laboratory: Darpa lldos 1.0 (2000). https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-datasets. Accessed 07 Apr 2024

  27. Pietraszek, T.: Using adaptive alert classification to reduce false positives in intrusion detection. In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 102–124. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30143-1_6

    Chapter  MATH  Google Scholar 

  28. Settles, B.: Active learning literature survey (2009)

    Google Scholar 

  29. Shon, H.G., Lee, Y., Yoon, M.: Semi-supervised alert filtering for network security. Electronics 12(23), 4755 (2023)

    Article  MATH  Google Scholar 

  30. Tharwat, A., Schenck, W.: A survey on active learning: state-of-the-art. Pract. Chall. Res. Dir. Math. 11(4), 820 (2023)

    MATH  Google Scholar 

  31. Vu, Q.H., Ruta, D., Cen, L.: Gradient boosting decision trees for cyber security threats detection based on network events logs. In: 2019 IEEE International Conference on Big Data, pp. 5921–5928. IEEE, Los Angeles, CA, USA (2019)

    Google Scholar 

  32. Wang, T., Zhang, C., Lu, Z., Du, D., Han, Y.: Identifying truly suspicious events and false alarms based on alert graph. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 5929–5936. IEEE, Los Angeles, CA, USA (2019)

    Google Scholar 

  33. Wang, X., Yang, X., Liang, X., Zhang, X., Zhang, W., Gong, X.: Combating alert fatigue with AlertPro: context-aware alert prioritization using reinforcement learning for multi-step attack detection. Comput. Secur. 137, 103583 (2023)

    Article  MATH  Google Scholar 

  34. Wang, Y., Chen, H., Heng, Q., et al.: FreeMatch: self-adaptive thresholding for semi-supervised learning (2023). http://arxiv.org/abs/2205.07246

  35. Yuan, Z., et al.: DualTeacher: bridging coexistence of unlabelled classes for semi-supervised incremental object detection (2023). http://arxiv.org/abs/2401.05362

  36. Zhao, X., Greenberg, J., An, Y., Hu, X.T.: Fine-tuning BERT model for materials named entity recognition. In: 2021 IEEE International Conference on Big Data (Big Data), pp. 3717–3720. IEEE, Orlando, FL, USA (2021)

    Google Scholar 

Download references

Acknowledgments

This study is funded by science and technology project of the headquarters of State Grid Corporation of China (Research and Application of Network Security Situation Awareness Technology Based on Knowledge Graph, Project Code: 5700-202352606A-3-2-ZN). It also receives support from the Key Laboratory of Network Assessment Technology at the Chinese Academy of Sciences, and the Beijing Key Laboratory of Network Security and Protection Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongxu Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, D. et al. (2025). FAF-BM: An Approach for False Alerts Filtering Using BERT Model with Semi-supervised Active Learning. In: Zhao, J., Meng, W. (eds) Science of Cyber Security. SciSec 2024. Lecture Notes in Computer Science, vol 15441. Springer, Singapore. https://doi.org/10.1007/978-981-96-2417-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-2417-1_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-2416-4

  • Online ISBN: 978-981-96-2417-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics