Abstract
This article presents PD-SLAM, a visual SLAM (Simultaneous Localization and Mapping) system designed specifically for dynamic environments. Accurately self-positioning and mapping the environment are crucial capabilities for intelligent robots. However, most existing SLAM systems assume static environments, which may lead to reduced robustness of the system in the presence of moving objects. PD-SLAM, built upon the ORB-SLAM3 framework, addresses this challenge by integrating a semantic segmentation module and optical flow techniques to filter out features from moving regions. Additionally, PD-SLAM utilizes a geometric feature-based method to eliminate outlier features, thereby effectively removing dynamic objects from the environment. Performance evaluations conducted on the TUM RGB-D dataset have demonstrated that PD-SLAM significantly improves absolute trajectory accuracy in dynamic environments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Bresson, G., Alsayed, Z., Yu, L., Glaser, S.: Simultaneous localization and mapping: a survey of current trends in autonomous driving. IEEE Trans. Intell. Veh. 2(3), 194–220 (2017)
Campos, C., Elvira, R., RodrÃguez, J.J.G., Montiel, J.M., Tardós, J.D.: ORB-SLAM3: an accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Trans. Rob. 37(6), 1874–1890 (2021)
Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: European Conference on Computer Vision, pp. 834–849. Springer (2014)
Esparza, D., Flores, G.: The STDyn-SLAM: a stereo vision and semantic segmentation approach for VSLAM in dynamic outdoor environments. IEEE Access 10, 18201–18209 (2022)
Wen, S., Li, P., Zhao, Y., Zhang, H., Sun, F., Wang, Z.: Semantic visual SLAM in dynamic environment. Auton. Robot. 45(4), 493–504 (2021)
Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 573–580 (2012)
Cheng, Q.H.: Improving monocular visual SLAM in dynamic environments: an optical-flow-based approach. Adv. Robot. Int. J. Robot. Soc. Japan 33(11–12) (2019)
Bescos, B., Fácil, J.M., Civera, J., Neira, J.: DynaSLAM: tracking, mapping, and inpainting in dynamic scenes. IEEE Robot. Autom. Lett. 3(4), 4076–4083 (2018)
Zhong, F., Wang, S., Zhang, Z., Wang, Y.: Detect-SLAM: making object detection and SLAM mutually beneficial. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1001–1010 (2018)
Runz, M., Buffier, M., Agapito, L.: Maskfusion: real-time recognition, tracking and reconstruction of multiple moving objects. In: 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 10–20 (2018)
Yu, C., et al.: DS-SLAM: a semantic visual SLAM towards dynamic environments. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1168–1174 (2018)
Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: ENet: a deep neural network architecture for real-time semantic segmentation. arXiv preprint arXiv:1606.02147 (2016)
Sinha, D., El-Sharkawy, M.: Thin MobileNet: an enhanced mobilenet architecture. In: 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), pp. 0280–0285 (2019)
Zhang, X., Zhou, X., Lin, M. Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)
Mehta, S., Rastegari, M., Caspi, A., Shapiro, L., Hajishirzi, H.: ESPNet: efficient spatial pyramid of dilated convolutions for semantic segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 552–568 (2018)
Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J.: ICNet for real-time semantic segmentation on high-resolution images. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 405–420 (2018)
Liu, Y., et al.: Paddleseg: a high-efficient development toolkit for image segmentation. arXiv preprint arXiv:2101.06175 (2021)
Peng, J., et al.: Pp-liteseg: a superior real-time semantic segmentation model. arXiv preprint arXiv:2204.02681 (2022)
Zhang, Z., Scaramuzza, D.: A tutorial on quantitative trajectory evaluation for visual(-inertial) odometry. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 7244–7251 (2018)
Zhou, Q., et al.: Multi-scale deep context convolutional neural networks for semantic segmentation. World Wide Web 22, 555–570 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Xu, C., Zou, Q., Yang, W. (2025). PD-SLAM: A Visual SLAM for Dynamic Environments. In: Lu, H. (eds) Artificial Intelligence and Robotics. ISAIR 2024. Communications in Computer and Information Science, vol 2402. Springer, Singapore. https://doi.org/10.1007/978-981-96-2911-4_24
Download citation
DOI: https://doi.org/10.1007/978-981-96-2911-4_24
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-2910-7
Online ISBN: 978-981-96-2911-4
eBook Packages: Artificial Intelligence (R0)