Skip to main content

PD-SLAM: A Visual SLAM for Dynamic Environments

  • Conference paper
  • First Online:
Artificial Intelligence and Robotics (ISAIR 2024)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2402))

Included in the following conference series:

  • 74 Accesses

Abstract

This article presents PD-SLAM, a visual SLAM (Simultaneous Localization and Mapping) system designed specifically for dynamic environments. Accurately self-positioning and mapping the environment are crucial capabilities for intelligent robots. However, most existing SLAM systems assume static environments, which may lead to reduced robustness of the system in the presence of moving objects. PD-SLAM, built upon the ORB-SLAM3 framework, addresses this challenge by integrating a semantic segmentation module and optical flow techniques to filter out features from moving regions. Additionally, PD-SLAM utilizes a geometric feature-based method to eliminate outlier features, thereby effectively removing dynamic objects from the environment. Performance evaluations conducted on the TUM RGB-D dataset have demonstrated that PD-SLAM significantly improves absolute trajectory accuracy in dynamic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bresson, G., Alsayed, Z., Yu, L., Glaser, S.: Simultaneous localization and mapping: a survey of current trends in autonomous driving. IEEE Trans. Intell. Veh. 2(3), 194–220 (2017)

    Article  Google Scholar 

  2. Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: ORB-SLAM3: an accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Trans. Rob. 37(6), 1874–1890 (2021)

    Article  Google Scholar 

  3. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: European Conference on Computer Vision, pp. 834–849. Springer (2014)

    Google Scholar 

  4. Esparza, D., Flores, G.: The STDyn-SLAM: a stereo vision and semantic segmentation approach for VSLAM in dynamic outdoor environments. IEEE Access 10, 18201–18209 (2022)

    Article  Google Scholar 

  5. Wen, S., Li, P., Zhao, Y., Zhang, H., Sun, F., Wang, Z.: Semantic visual SLAM in dynamic environment. Auton. Robot. 45(4), 493–504 (2021)

    Google Scholar 

  6. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 573–580 (2012)

    Google Scholar 

  7. Cheng, Q.H.: Improving monocular visual SLAM in dynamic environments: an optical-flow-based approach. Adv. Robot. Int. J. Robot. Soc. Japan 33(11–12) (2019)

    Google Scholar 

  8. Bescos, B., Fácil, J.M., Civera, J., Neira, J.: DynaSLAM: tracking, mapping, and inpainting in dynamic scenes. IEEE Robot. Autom. Lett. 3(4), 4076–4083 (2018)

    Article  Google Scholar 

  9. Zhong, F., Wang, S., Zhang, Z., Wang, Y.: Detect-SLAM: making object detection and SLAM mutually beneficial. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1001–1010 (2018)

    Google Scholar 

  10. Runz, M., Buffier, M., Agapito, L.: Maskfusion: real-time recognition, tracking and reconstruction of multiple moving objects. In: 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 10–20 (2018)

    Google Scholar 

  11. Yu, C., et al.: DS-SLAM: a semantic visual SLAM towards dynamic environments. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1168–1174 (2018)

    Google Scholar 

  12. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: ENet: a deep neural network architecture for real-time semantic segmentation. arXiv preprint arXiv:1606.02147 (2016)

  13. Sinha, D., El-Sharkawy, M.: Thin MobileNet: an enhanced mobilenet architecture. In: 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), pp. 0280–0285 (2019)

    Google Scholar 

  14. Zhang, X., Zhou, X., Lin, M. Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

  15. Mehta, S., Rastegari, M., Caspi, A., Shapiro, L., Hajishirzi, H.: ESPNet: efficient spatial pyramid of dilated convolutions for semantic segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 552–568 (2018)

    Google Scholar 

  16. Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J.: ICNet for real-time semantic segmentation on high-resolution images. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 405–420 (2018)

    Google Scholar 

  17. Liu, Y., et al.: Paddleseg: a high-efficient development toolkit for image segmentation. arXiv preprint arXiv:2101.06175 (2021)

  18. Peng, J., et al.: Pp-liteseg: a superior real-time semantic segmentation model. arXiv preprint arXiv:2204.02681 (2022)

  19. Zhang, Z., Scaramuzza, D.: A tutorial on quantitative trajectory evaluation for visual(-inertial) odometry. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 7244–7251 (2018)

    Google Scholar 

  20. Zhou, Q., et al.: Multi-scale deep context convolutional neural networks for semantic segmentation. World Wide Web 22, 555–570 (2019)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wankou Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, C., Zou, Q., Yang, W. (2025). PD-SLAM: A Visual SLAM for Dynamic Environments. In: Lu, H. (eds) Artificial Intelligence and Robotics. ISAIR 2024. Communications in Computer and Information Science, vol 2402. Springer, Singapore. https://doi.org/10.1007/978-981-96-2911-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-2911-4_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-2910-7

  • Online ISBN: 978-981-96-2911-4

  • eBook Packages: Artificial Intelligence (R0)

Publish with us

Policies and ethics