Skip to main content

Impact of Environmental Changes on Optimized Robotics Collective Motion for Multi-objective Coverage Tasks

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2025)

Abstract

Coverage tasks have garnered significant interest in recent years due to their applications in fields such as environmental monitoring, search and rescue, and robotic exploration. Swarm robotics has emerged as a promising approach to tackle these challenges, leveraging collective behaviors to enhance efficiency. However, the effectiveness of swarm algorithms often hinges on the careful tuning of parameters, which can be influenced by varying environmental features. This study investigates the impact of these features on the performance of optimized collective motion in swarm robotics for solving multi-objective coverage problems. Through a comprehensive sensitivity analysis, we evaluate how changes in parameters-such as arena size, number of robots, obstacle density, and obstacle structure-affect swarm performance in solving coverage problems. The analysis focuses on key performance metrics across multiple objectives: coverage percentage, coverage time, robot connectivity, and collision rates. Our findings provide critical insights into the adaptability of swarm algorithms, highlighting the importance of environmental context in optimizing swarm efficacy across competing objectives. These results contribute to the development of more robust and adaptive swarm-based solutions for multi-objective coverage tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abpeikar, S., Kasmarik, K., Tran, P.V., Garratt, M., Anavatti, S., Khan, M.M.: Tuning swarm behavior for environmental sensing tasks represented as coverage problems. In: Artificial Intelligence and Data Science in Environmental Sensing, pp. 155–178. Elsevier (2022). https://doi.org/10.1016/B978-0-323-90508-4.00001-0

  2. Bahaidarah, M., Rekabi-Bana, F., Marjanovic, O., Arvin, F.: Swarm flocking using optimisation for a self-organised collective motion. Swarm Evol. Comput. 86, 101491 (2024). https://doi.org/10.1016/j.swevo.2024.101491

    Article  Google Scholar 

  3. Duisterhof, B.P., Li, S., Burgués, J., Reddi, V.J., de Croon, G.C.H.E.: Sniffy Bug: a fully autonomous swarm of gas-seeking Nano quadcopters in cluttered environments. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 9099–9106 (2021). https://doi.org/10.1109/IROS51168.2021.9636217, iSSN: 2153-0866

  4. Eiben, A., Nitschke, G., Schut, M.: Evolving an agent collective for cooperative mine sweeping. In: 2005 IEEE Congress on Evolutionary Computation. vol. 1, pp. 831–836, September 2005. https://doi.org/10.1109/CEC.2005.1554769. iSSN: 1941-0026

  5. Ghanem, R., Ali, I.M., Abpeikar, S., Kasmarik, K., Garratt, M.: Optimizing and predicting swarming collective motion performance for coverage problems solving: a simulation-optimization approach. Eng. Appl. Artif. Intell. 139, 109522 (2025). https://doi.org/10.1016/j.engappai.2024.109522

    Article  Google Scholar 

  6. Katoch, S., Chauhan, S.S., Kumar, V.: A review on genetic algorithm: past, present, and future. Multimed. Tools App. 80(5), 8091–8126 (2021). https://doi.org/10.1007/s11042-020-10139-6

    Article  MATH  Google Scholar 

  7. Khan, M., et al.: Generating collective motion behaviour libraries using developmental evolution. In: Liu, T., Webb, G., Yue, L., Wang, D. (eds.) AI 2023: Advances in Artificial Intelligence, pp. 441–452. Springer Nature, Singapore (2024). https://doi.org/10.1007/978-981-99-8391-9_35

  8. Lin, C.C., Hsiao, P.Y., Chen, K.C.: A motion planning of swarm robots using genetic algorithm. In: 2010 International Conference on Broadband, Wireless Computing, Communication and Applications, pp. 538–543, November 2010. https://doi.org/10.1109/BWCCA.2010.128

  9. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. SIGGRAPH Comput. Graph. 21(4), 25–34 (1987). https://doi.org/10.1145/37402.37406

    Article  MATH  Google Scholar 

  10. Tang, Q., Zhang, L., Luo, W., Ding, L., Yu, F., Zhang, J.: A comparative study of biology-inspired algorithms applied to swarm robots target searching. In: Tan, Y., Shi, Y., Li, L. (eds.) ICSI 2016. LNCS, vol. 9713, pp. 479–490. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41009-8_52

    Chapter  MATH  Google Scholar 

  11. Thrun, M.C., Ultsch, A.: Swarm intelligence for self-organized clustering. Artif. Intell. 290, 103237 (2021). https://doi.org/10.1016/j.artint.2020.103237

    Article  MathSciNet  MATH  Google Scholar 

  12. Tran, V.P., Garratt, M.A., Kasmarik, K., Anavatti, S.G.: Dynamic frontier-led swarming: multi-robot repeated coverage in dynamic environments. IEEE/CAA J. Autom. Sin. 10(3), 646–661 (2023). https://doi.org/10.1109/JAS.2023.123087

    Article  MATH  Google Scholar 

  13. Tran, V.P., Garratt, M.A., Kasmarik, K., Anavatti, S.G., Abpeikar, S.: Frontier-led swarming: robust multi-robot coverage of unknown environments. Swarm Evol. Comput. 75, 101171 (2022). https://doi.org/10.1016/j.swevo.2022.101171

    Article  Google Scholar 

  14. Wang, C., Zhang, S., Ma, T., Xiao, Y., Chen, M.Z., Wang, L.: Swarm intelligence: a survey of model classification and applications. Chin. J. Aeronaut. (2024). https://doi.org/10.1016/j.cja.2024.03.019

    Article  MATH  Google Scholar 

  15. Zhou, X., Wang, H., Ding, B.: How many robots are enough: a multi-objective genetic algorithm for the single-objective time-limited complete coverage problem. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 2380–2387. IEEE Press, Brisbane, Australia, May 2018.https://doi.org/10.1109/ICRA.2018.8461028

Download references

Acknowledgement

The authors would like to thank UNSW for the financial support provided through the UIPA scholarship program. This research was supported by resources from the National Computational Infrastructure (NCI Australia), funded by the Australian Government through NCRIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reda Ghanem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghanem, R., Ali, I.M., Kasmarik, K., Garratt, M. (2025). Impact of Environmental Changes on Optimized Robotics Collective Motion for Multi-objective Coverage Tasks. In: Singh, H., et al. Evolutionary Multi-Criterion Optimization. EMO 2025. Lecture Notes in Computer Science, vol 15512. Springer, Singapore. https://doi.org/10.1007/978-981-96-3506-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-3506-1_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-3505-4

  • Online ISBN: 978-981-96-3506-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics