Skip to main content

A Study on Optimistic and Pessimistic Pareto-Fronts in Multiobjective Bilevel Optimization via \(\delta \)-Perturbation

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2025)

Abstract

In bilevel optimization, an upper level (UL) decision maker seeks to optimize an objective function while considering the optimal solutions of a lower level (LL) optimization problem. This hierarchical structure poses modeling and solution challenges, especially when the LL problem has multiple solutions. In such a case, the UL needs to make assumptions about the LL reaction. In the optimistic approach, the UL assumes that the LL reaction will be favorable, while in the pessimistic approach the opposite is true. In this study, we consider the case of a multiobjective bilevel optimization problem, where the UL has multiple objectives, while the LL has a single objective, but multiple optimal solutions for any given UL decision. Given that the LL can choose any solution from its optimal set, and in case the UL is not aware of the LL choice function, it leads to the possibility of two Pareto-optimal fronts at the UL, i.e. the optimistic and the pessimistic frontiers. To approximate both Pareto-optimal fronts, a \(\delta \)-perturbation approximation is proposed in this paper, where the LL objective is perturbed by a small \(\delta \) by utilizing the UL objectives at the LL. The perturbed reformulated bilevel problem is then solved via an extension of m-BLEAQ, an evolutionary bilevel algorithm that can deal with bilevel problems with multiple objectives at the UL and a single objective at the LL. The application of the m-BLEAQ algorithm to the reformulated bilevel problem leads to the identification of the optimistic and pessimistic frontiers for the multiobjective bilevel problem. In this proof-of-concept study, the proposed reformulation strategy is demonstrated on two test problems, showing the effectiveness of the proposal in accurately finding the optimistic and pessimistic frontiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In semivectorial bilevel optimization, the UL problem is single objective, while the LL problem is multiobjective.

References

  1. Alves, M.J., Antunes, C.H., Costa, J.P.: New concepts and an algorithm for multiobjective bilevel programming: optimistic, pessimistic and moderate solutions. Oper. Res. Int. Journal 21(4), 2593–2626 (2021)

    Article  MATH  Google Scholar 

  2. Antoniou, M., Korošec, P.: Multilevel optimisation. Optim. Under Uncertainty Appl. Aerosp. Eng. 307–331 (2021)

    Google Scholar 

  3. Antoniou, M., Sinha, A., Papa, G.: \(\delta \)-perturbation of bilevel optimization problems: an error bound analysis. Oper. Res. Perspect. 100315 (2024)

    Google Scholar 

  4. Barnharta, B., et al.: Handling practicalities in agricultural policy optimization for water quality improvements coin report number 2017007

    Google Scholar 

  5. Benson, H.P.: Existence of efficient solutions for vector maximization problems. J. Optim. Theory Appl. 26, 569–580 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coello Coello, C.A., Reyes Sierra, M.: A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 688–697. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24694-7_71

    Chapter  MATH  Google Scholar 

  7. Deb, K., et al.: Minimizing expected deviation in upper-level outcomes due to lower-level decision-making in hierarchical multi-objective problems. IEEE Trans. Evol. Comput. (2022)

    Google Scholar 

  8. Deb, K., Sinha, A.: Solving bilevel multi-objective optimization problems using evolutionary algorithms. In: International Conference on Evolutionary Multi-criterion Optimization, pp. 110–124. Springer (2009)

    Google Scholar 

  9. Deb, K., Sinha, A.: An efficient and accurate solution methodology for bilevel multi-objective programming problems using a hybrid evolutionary-local-search algorithm. Evol. Comput. 18(3), 403–449 (2010)

    Article  MATH  Google Scholar 

  10. Dempe, S., Kalashnikov, V., Pérez-Valdés, G.A., Kalashnykova, N.: Bilevel programming problems. Energy Syst.10, 978–3 (2015)

    Google Scholar 

  11. Mejía-de Dios, J.A., Rodríguez-Molina, A., Mezura-Montes, E.: Multiobjective bilevel optimization: a survey of the state-of-the-art. IEEE Trans. Syst. Man Cybern. Syst. (2023)

    Google Scholar 

  12. Eichfelder, G.: Solving nonlinear multiobjective bilevel optimization problems with coupled upper level constraints (2007). https://api.semanticscholar.org/CorpusID:211008773

  13. Gass, S., Saaty, T.: The computational algorithm for the parametric objective function. Naval Res. Logistics Q. 2(1–2), 39–45 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  14. Halter, W., Mostaghim, S.: Bilevel optimization of multi-component chemical systems using particle swarm optimization. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 1240–1247 (2006). https://api.semanticscholar.org/CorpusID:22916372

  15. Castro, O.R., Pozo, A.: Using hyper-heuristic to select leader and archiving methods for many-objective problems. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 109–123. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15934-8_8

    Chapter  MATH  Google Scholar 

  16. Kasimbeyli, R.: A conic scalarization method in multi-objective optimization. J. Global Optim. 56, 279–297 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lampariello, L., Sagratella, S., Stein, O.: The standard pessimistic bilevel problem. SIAM J. Optim. 29(2), 1634–1656 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Loridan, P., Morgan, J.: Weak via strong stackelberg problem: new results. J. Global Optim. 8, 263–287 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sinha, A., Lu, Z., Deb, K., Malo, P.: Bilevel optimization based on iterative approximation of multiple mappings. J. Heuristics 26(2), 151–185 (2020)

    Article  MATH  Google Scholar 

  20. Sinha, A., Malo, P., Deb, K.: Approximated set-valued mapping approach for handling multiobjective bilevel problems. Comput. Oper. Res. 77, 194–209 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sinha, A., Malo, P., Deb, K.: Evolutionary algorithm for bilevel optimization using approximations of the lower level optimal solution mapping. Eur. J. Oper. Res. 257(2), 395–411 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sinha, A., Deb, K.: Towards understanding evolutionary bilevel multi-objective optimization algorithm. IFAC Proc. Volumes 42(2), 338–343 (2009)

    Article  MATH  Google Scholar 

  23. Sinha, A., Malo, P., Deb, K.: Test problem construction for single-objective bilevel optimization. Evol. Comput. 22(3), 439–477 (2014)

    Article  MATH  Google Scholar 

  24. Sinha, A., Malo, P., Deb, K.: Towards understanding bilevel multi-objective optimization with deterministic lower level decisions. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 426–443. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15934-8_29

    Chapter  MATH  Google Scholar 

  25. Sinha, A., Malo, P., Deb, K.: Transportation policy formulation as a multi-objective bilevel optimization problem. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 1651–1658. IEEE (2015)

    Google Scholar 

  26. Sinha, A., Malo, P., Deb, K.: A review on bilevel optimization: from classical to evolutionary approaches and applications. IEEE Trans. Evol. Comput. 22(2), 276–295 (2017)

    Article  MATH  Google Scholar 

  27. Sinha, A., Malo, P., Deb, K., Korhonen, P., Wallenius, J.: Solving bilevel multicriterion optimization problems with lower level decision uncertainty. IEEE Trans. Evol. Comput. 20(2), 199–217 (2015)

    Article  MATH  Google Scholar 

  28. Zadeh, L.: Optimality and non-scalar-valued performance criteria. IEEE Trans. Autom. Control 8(1), 59–60 (1963)

    Article  MATH  Google Scholar 

  29. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Slovenian Research Agency (research core funding No. P2-0098). This work was also partially funded by the European Union’s Horizon Europe research an innovation programme under Grant Agreement No 101077049 (CONDUCTOR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Antoniou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antoniou, M., Sinha, A., Papa, G. (2025). A Study on Optimistic and Pessimistic Pareto-Fronts in Multiobjective Bilevel Optimization via \(\delta \)-Perturbation. In: Singh, H., et al. Evolutionary Multi-Criterion Optimization. EMO 2025. Lecture Notes in Computer Science, vol 15512. Springer, Singapore. https://doi.org/10.1007/978-981-96-3506-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-3506-1_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-3505-4

  • Online ISBN: 978-981-96-3506-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics