Skip to main content

Investigating the Proxemics Shape in Social Navigation: An Exploratory User Study

  • Conference paper
  • First Online:
Social Robotics (ICSR + AI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15561))

Included in the following conference series:

  • 227 Accesses

Abstract

Proxemics is a crucial aspect of social robot navigation that studies how people utilize the physical space around them and position themselves relative to others. This exploratory user study looked at the interaction distances users preferred in human-robot interaction with a mobile teleoperated robot; the distances were utilized to design appropriate proxemics shapes. A within-the-group experimental design was conducted with four independent variables: two positions (sitting/standing) and two approach directions (front/back); each user experienced all four trials. Results indicate that the proxemics distance is not affected by the participant's position but by the robot’s approach direction. Participants required more distance from the robot when approaching them from the front. The outcome distances combined with findings from the literature led to the formation of an asymmetric proxemics shape with higher distances than Hall’s [1] traditional circular shape and distance zones, representing real-world interactions and distance preferences in human-robot encounters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.T. The Hidden dimension, Anchor Books; New York, first published (1966)

    Google Scholar 

  2. Francis, A., et al.: Principles and guidelines for evaluating social robot navigation algorithms (2023). http://arxiv.org/abs/2306.16740

  3. Karwowski, J., Szynkiewicz, W., Niewiadomska-Szynkiewicz, E.: Bridging requirements, planning, and evaluation: a review of social robot navigation. Sensors 24, 9 (2024). https://doi.org/10.3390/s24092794

  4. Samarakoon, S.M.B.P., Muthugala, M.A.V.J., Jayasekara, A.G.B.P.: A review on human–robot proxemics. MDPI (2022). https://doi.org/10.3390/electronics11162490

  5. Yang, G.Z., et al.: The grand challenges of science robotics (2018). https://doi.org/10.1126/scirobotics.aar7650

  6. Walters, M.L., Oskoei, M.A., Syrdal, D.S., Dautenhahn, K.: A long-term Human-Robot Proxemic study. In: Proceedings - IEEE international workshop on robot and human interactive communication, pp. 137–142 (2011). https://doi.org/10.1109/ROMAN.2011.6005274

  7. Rossi, S., Staffa, M., Bove, L., Capasso, R., Ercolano, G.: User’s personality and activity influence on HRI comfortable distances. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Verlag, pp. 167–177 (2017). https://doi.org/10.1007/978-3-319-70022-9_17

  8. Klüber, K., Onnasch, L.: Keep your distance! assessing proxemics to virtual robots by caregivers. Assoc. Comput. Mach. (ACM), 193–197 (2023). https://doi.org/10.1145/3568294.3580070

  9. Mead, R., Matarićmatarić, M.J.: Perceptual models of human-robot proxemics (2016). http://robotics.usc.edu/interaction

  10. Gérin-Lajoie, M., Richards, C.L., Fung, J., McFadyen, B.J.: Characteristics of personal space during obstacle circumvention in physical and virtual environments. Gait Posture 27(2) (2008). https://doi.org/10.1016/j.gaitpost.2007.03.015

  11. Li, R., van Almkerk, M., van Waveren, S., Carter, E., Leite, I.: Comparing human-robot proxemics between virtual reality and the real world. In: 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Daegu, Korea (South), pp. 431–439 (2019)

    Google Scholar 

  12. Neggers, M.M.E., Cuijpers, R.H., Ruijten, P.A.M., IJsselsteijn, W.A.: The effect of robot speed on comfortable passing distances. Front. Robot AI 9 (2022). https://doi.org/10.3389/frobt.2022.915972

  13. Takayama, L., Pantofaru, C.: Influences on proxemic behaviors in human-robot interaction. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 5495–5502 (2009). https://doi.org/10.1109/IROS.2009.5354145

  14. Hecht, H., Welsch, R., Viehoff, J., Longo, M.R.: The shape of personal space. Acta Psychol. (AMST) 193, 113–122 (2019). https://doi.org/10.1016/j.actpsy.2018.12.009

    Article  MATH  Google Scholar 

  15. Honig, S., Edan, Y., Zaichyk, H., Oron-Gilad, T.: Task influence on perceptions of a person-following robot and following-angle preferences. In: Conference on Human Factors in Computing Systems - Proceedings, Association for Computing Machinery (2019). https://doi.org/10.1145/3290607.3313087

  16. Charalampous, K., Kostavelis, I., Gasteratos, A.: Recent trends in social aware robot navigation: a survey. Elsevier B.V. (2017). https://doi.org/10.1016/j.robot.2017.03.002

  17. Rios-Martinez, J., Spalanzani, A., Laugier, C.: From proxemics theory to socially-aware navigation: a survey. Int. J. Soc. Robot. 7(2), 137–153 (2015). https://doi.org/10.1007/s12369-014-0251-1

    Article  MATH  Google Scholar 

  18. Hayduk, L.A.: The shape of personal space: an experimental investigation. Can. J. Behav. Sci. 13(1) (1981). https://doi.org/10.1037/h0081114

  19. Bailenson, J.N., Blascovich, J., Beall, A.C., Loomis, J.M.: Equilibrium theory revisited: mutual gaze and personal space in virtual environments, presence: Teleoperators Virtual Environ. 10(6) (2001). https://doi.org/10.1162/105474601753272844

  20. Newman, R.C., Pollack, D.: Proxemics in deviant adolescents. J. Consult. Clin. Psychol. 40(1), 6–8 (1973). https://doi.org/10.1037/h0033961

    Article  Google Scholar 

  21. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995). https://doi.org/10.1103/PhysRevE.51.4282

    Article  MATH  Google Scholar 

  22. Neggers, M.M.E., Cuijpers, R.H., Ruijten, P.A.M., IJsselsteijn, W.A.: Determining shape and size of personal space of a human when passed by a robot. Int. J. Soc. Robot. 14(2), 561–572 (2022). https://doi.org/10.1007/s12369-021-00805-6

  23. Walters, M.L.: An empirical framework for human-robot proxemics (2009)

    Google Scholar 

  24. Walters, M.L., Koay, K.L., Woods, S.N., Syrdal, D.S., Dautenhahn, K.: Robot to human approaches: preliminary results on comfortable distances and preferences (2007). http://www.aaai.org

  25. Daza, M., Barrios-Aranibar, D., Diaz-Amado, J., Cardinale, Y., Vilasboas, J.: An approach of social navigation based on proxemics for crowded environments of humans and robots. Micromachines (Basel) 12(2) (2021). https://doi.org/10.3390/mi12020193

  26. Clavero, J.G., Rico, F.M., Rodriguez-Lera, F.J., Hernandez, J.M.G., Olivera, V.M.: Defining Adaptive proxemic zones for activity-aware navigation (2020). http://arxiv.org/abs/2009.04770

  27. Ginés, J., Martín, F., Vargas, D., Rodríguez, F.J., Matellán, V.: Social navigation in a cognitive architecture using dynamic proxemic zones. Sensors (Switzerland) 19(23) (2019). https://doi.org/10.3390/s19235189

  28. Singamaneni, P.T., et al.: A survey on socially aware robot navigation: taxonomy and future challenges. Int. J. Rob. Res. (2024). https://doi.org/10.1177/02783649241230562

    Article  Google Scholar 

  29. Sverre Syrdal, D., Dautenhahn, K., Lee Koay, K., Walters, M.L.: The negative attitudes towards robots scale and reactions to robot behaviour in a live human-robot interaction study (2009)

    Google Scholar 

  30. Ratchford, M., Barnhart, M.: Development and validation of the technology adoption propensity (TAP) index. J. Bus. Res. 65(8), 1209–1215 (2012). https://doi.org/10.1016/j.jbusres.2011.07.001

    Article  MATH  Google Scholar 

  31. Xu, X., Liying, L., Khamis, M., Zhao, G., Bretin, R.: Understanding dynamic human-robot proxemics in the case of four-legged canine-inspired robots (2023). http://arxiv.org/abs/2302.10729

Download references

Acknowledgments

This research was supported by the Israeli Innovation Authority as part of the HRI consortium and partially supported by Ben-Gurion University of the Negev through the Rabbi W. Gunther Plaut Chair in Manufacturing Engineering, the George Shrut Chair for Human Performance, and the Agricultural, Biological Cognitive Robotics Initiative (funded by the Marcus Endowment Fund and the Helmsley Charitable Trust). We thank the students, Hadar Alkobi and Tal Yellin Tenney, for conducting the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehud Nahum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nahum, E., Edan, Y., Oron-Gilad, T. (2025). Investigating the Proxemics Shape in Social Navigation: An Exploratory User Study. In: Palinko, O., et al. Social Robotics. ICSR + AI 2024. Lecture Notes in Computer Science(), vol 15561. Springer, Singapore. https://doi.org/10.1007/978-981-96-3522-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-3522-1_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-3521-4

  • Online ISBN: 978-981-96-3522-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics