Abstract
Proxemics is a crucial aspect of social robot navigation that studies how people utilize the physical space around them and position themselves relative to others. This exploratory user study looked at the interaction distances users preferred in human-robot interaction with a mobile teleoperated robot; the distances were utilized to design appropriate proxemics shapes. A within-the-group experimental design was conducted with four independent variables: two positions (sitting/standing) and two approach directions (front/back); each user experienced all four trials. Results indicate that the proxemics distance is not affected by the participant's position but by the robot’s approach direction. Participants required more distance from the robot when approaching them from the front. The outcome distances combined with findings from the literature led to the formation of an asymmetric proxemics shape with higher distances than Hall’s [1] traditional circular shape and distance zones, representing real-world interactions and distance preferences in human-robot encounters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
E.T. The Hidden dimension, Anchor Books; New York, first published (1966)
Francis, A., et al.: Principles and guidelines for evaluating social robot navigation algorithms (2023). http://arxiv.org/abs/2306.16740
Karwowski, J., Szynkiewicz, W., Niewiadomska-Szynkiewicz, E.: Bridging requirements, planning, and evaluation: a review of social robot navigation. Sensors 24, 9 (2024). https://doi.org/10.3390/s24092794
Samarakoon, S.M.B.P., Muthugala, M.A.V.J., Jayasekara, A.G.B.P.: A review on human–robot proxemics. MDPI (2022). https://doi.org/10.3390/electronics11162490
Yang, G.Z., et al.: The grand challenges of science robotics (2018). https://doi.org/10.1126/scirobotics.aar7650
Walters, M.L., Oskoei, M.A., Syrdal, D.S., Dautenhahn, K.: A long-term Human-Robot Proxemic study. In: Proceedings - IEEE international workshop on robot and human interactive communication, pp. 137–142 (2011). https://doi.org/10.1109/ROMAN.2011.6005274
Rossi, S., Staffa, M., Bove, L., Capasso, R., Ercolano, G.: User’s personality and activity influence on HRI comfortable distances. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Verlag, pp. 167–177 (2017). https://doi.org/10.1007/978-3-319-70022-9_17
Klüber, K., Onnasch, L.: Keep your distance! assessing proxemics to virtual robots by caregivers. Assoc. Comput. Mach. (ACM), 193–197 (2023). https://doi.org/10.1145/3568294.3580070
Mead, R., Matarićmatarić, M.J.: Perceptual models of human-robot proxemics (2016). http://robotics.usc.edu/interaction
Gérin-Lajoie, M., Richards, C.L., Fung, J., McFadyen, B.J.: Characteristics of personal space during obstacle circumvention in physical and virtual environments. Gait Posture 27(2) (2008). https://doi.org/10.1016/j.gaitpost.2007.03.015
Li, R., van Almkerk, M., van Waveren, S., Carter, E., Leite, I.: Comparing human-robot proxemics between virtual reality and the real world. In: 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Daegu, Korea (South), pp. 431–439 (2019)
Neggers, M.M.E., Cuijpers, R.H., Ruijten, P.A.M., IJsselsteijn, W.A.: The effect of robot speed on comfortable passing distances. Front. Robot AI 9 (2022). https://doi.org/10.3389/frobt.2022.915972
Takayama, L., Pantofaru, C.: Influences on proxemic behaviors in human-robot interaction. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 5495–5502 (2009). https://doi.org/10.1109/IROS.2009.5354145
Hecht, H., Welsch, R., Viehoff, J., Longo, M.R.: The shape of personal space. Acta Psychol. (AMST) 193, 113–122 (2019). https://doi.org/10.1016/j.actpsy.2018.12.009
Honig, S., Edan, Y., Zaichyk, H., Oron-Gilad, T.: Task influence on perceptions of a person-following robot and following-angle preferences. In: Conference on Human Factors in Computing Systems - Proceedings, Association for Computing Machinery (2019). https://doi.org/10.1145/3290607.3313087
Charalampous, K., Kostavelis, I., Gasteratos, A.: Recent trends in social aware robot navigation: a survey. Elsevier B.V. (2017). https://doi.org/10.1016/j.robot.2017.03.002
Rios-Martinez, J., Spalanzani, A., Laugier, C.: From proxemics theory to socially-aware navigation: a survey. Int. J. Soc. Robot. 7(2), 137–153 (2015). https://doi.org/10.1007/s12369-014-0251-1
Hayduk, L.A.: The shape of personal space: an experimental investigation. Can. J. Behav. Sci. 13(1) (1981). https://doi.org/10.1037/h0081114
Bailenson, J.N., Blascovich, J., Beall, A.C., Loomis, J.M.: Equilibrium theory revisited: mutual gaze and personal space in virtual environments, presence: Teleoperators Virtual Environ. 10(6) (2001). https://doi.org/10.1162/105474601753272844
Newman, R.C., Pollack, D.: Proxemics in deviant adolescents. J. Consult. Clin. Psychol. 40(1), 6–8 (1973). https://doi.org/10.1037/h0033961
Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995). https://doi.org/10.1103/PhysRevE.51.4282
Neggers, M.M.E., Cuijpers, R.H., Ruijten, P.A.M., IJsselsteijn, W.A.: Determining shape and size of personal space of a human when passed by a robot. Int. J. Soc. Robot. 14(2), 561–572 (2022). https://doi.org/10.1007/s12369-021-00805-6
Walters, M.L.: An empirical framework for human-robot proxemics (2009)
Walters, M.L., Koay, K.L., Woods, S.N., Syrdal, D.S., Dautenhahn, K.: Robot to human approaches: preliminary results on comfortable distances and preferences (2007). http://www.aaai.org
Daza, M., Barrios-Aranibar, D., Diaz-Amado, J., Cardinale, Y., Vilasboas, J.: An approach of social navigation based on proxemics for crowded environments of humans and robots. Micromachines (Basel) 12(2) (2021). https://doi.org/10.3390/mi12020193
Clavero, J.G., Rico, F.M., Rodriguez-Lera, F.J., Hernandez, J.M.G., Olivera, V.M.: Defining Adaptive proxemic zones for activity-aware navigation (2020). http://arxiv.org/abs/2009.04770
Ginés, J., Martín, F., Vargas, D., Rodríguez, F.J., Matellán, V.: Social navigation in a cognitive architecture using dynamic proxemic zones. Sensors (Switzerland) 19(23) (2019). https://doi.org/10.3390/s19235189
Singamaneni, P.T., et al.: A survey on socially aware robot navigation: taxonomy and future challenges. Int. J. Rob. Res. (2024). https://doi.org/10.1177/02783649241230562
Sverre Syrdal, D., Dautenhahn, K., Lee Koay, K., Walters, M.L.: The negative attitudes towards robots scale and reactions to robot behaviour in a live human-robot interaction study (2009)
Ratchford, M., Barnhart, M.: Development and validation of the technology adoption propensity (TAP) index. J. Bus. Res. 65(8), 1209–1215 (2012). https://doi.org/10.1016/j.jbusres.2011.07.001
Xu, X., Liying, L., Khamis, M., Zhao, G., Bretin, R.: Understanding dynamic human-robot proxemics in the case of four-legged canine-inspired robots (2023). http://arxiv.org/abs/2302.10729
Acknowledgments
This research was supported by the Israeli Innovation Authority as part of the HRI consortium and partially supported by Ben-Gurion University of the Negev through the Rabbi W. Gunther Plaut Chair in Manufacturing Engineering, the George Shrut Chair for Human Performance, and the Agricultural, Biological Cognitive Robotics Initiative (funded by the Marcus Endowment Fund and the Helmsley Charitable Trust). We thank the students, Hadar Alkobi and Tal Yellin Tenney, for conducting the experiments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Nahum, E., Edan, Y., Oron-Gilad, T. (2025). Investigating the Proxemics Shape in Social Navigation: An Exploratory User Study. In: Palinko, O., et al. Social Robotics. ICSR + AI 2024. Lecture Notes in Computer Science(), vol 15561. Springer, Singapore. https://doi.org/10.1007/978-981-96-3522-1_16
Download citation
DOI: https://doi.org/10.1007/978-981-96-3522-1_16
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-3521-4
Online ISBN: 978-981-96-3522-1
eBook Packages: Computer ScienceComputer Science (R0)