Abstract
Utilizing classical convolutional networks results in lackluster performance in certain classification tasks. To address this problem, recent solutions add extra layers or sub-networks to increase the classification performance of existing networks. More recent methods employ multiple networks coupled with varying learning strategies. However, these approaches demand larger memory and computational requirement due to additional layers, prohibiting usage in devices with limited computing power. In this paper, we propose an efficient convolutional block which minimizes the computational requirements of a network while maintaining information flow through concatenation and element-wise addition. We design a classification architecture, called Half-Append Half-Add Network (HAHANet), built using our efficient convolutional block. Our approach achieves state-of-the-art accuracy on several challenging fine-grained classification tasks. More importantly, HAHANet outperforms top networks while reducing parameter count by at most 54 times. Our code and trained models are publicly available at https://github.com/dlsucivi/HAHANet-PyTorch.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aguilar, E., Radeva, P.: Uncertainty-aware integration of local and flat classifiers for food recognition. Pattern Recogn. Lett. 136, 237–243 (2020)
Antioquia, A.M.C.: Accurate thoracic disease classification via ensemble networks. In: Proceedings of the 2022 5th International Conference on Image and Graphics Processing, ICIGP 2022, New York, NY, USA, pp. 196–201. Association for Computing Machinery (2022). https://doi.org/10.1145/3512388.3512417
Antioquia, A.M.C.: Effsemble: faster, smaller and more accurate ensemble networks for thoracic disease classification. Int. J. Comput. Appl. Technol. 71(4), 332–339 (2023). https://doi.org/10.1504/IJCAT.2023.132406
Antioquia, A.M.C., Stanley Tan, D., Azcarraga, A., Cheng, W.H., Hua, K.L.: ZipNet: ZFNet-level accuracy with 48\(\times \) fewer parameters. In: 2018 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4 (2018)
Ayan, E., Erbay, H., Varçın, F.: Crop pest classification with a genetic algorithm-based weighted ensemble of deep convolutional neural networks. Comput. Electron. Agric. 179, 105809 (2020)
Cao, X., Guo, S., Lin, J., Zhang, W., Liao, M.: Online tracking of ants based on deep association metrics: method, dataset and evaluation. Pattern Recogn. 103, 107233 (2020)
Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, pp. 1800–1807. IEEE Computer Society, July 2017
Han, B., et al.: Co-teaching: robust training of deep neural networks with extremely noisy labels. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, pp. 770–778. IEEE Computer Society, June 2016
He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of tricks for image classification with convolutional neural networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, pp. 558–567. IEEE Computer Society, June 2019
Huang, G., Liu, Z., Maaten, L.V.D., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, pp. 2261–2269. IEEE Computer Society, July 2017
Jahani Heravi, E., Habibi Aghdam, H., Puig, D.: An optimized convolutional neural network with bottleneck and spatial pyramid pooling layers for classification of foods. Pattern Recognit. Lett. 105, 50–58 (2018). Machine Learning and Applications in Artificial Intelligence
Kaur, P., Sikka, K., Wang, W., Belongie, S.J., Divakaran, A.: FoodX-251: a dataset for fine-grained food classification. CoRR abs/1907.06167 (2019)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)
Lin, T., RoyChowdhury, A., Maji, S.: Bilinear CNN models for fine-grained visual recognition. In: 2015 IEEE International Conference on Computer Vision (ICCV), Los Alamitos, CA, USA, pp. 1449–1457. IEEE Computer Society, December 2015
Lu, L., Wang, P., Cao, Y.: A novel part-level feature extraction method for fine-grained vehicle recognition. Pattern Recogn. 131, 108869 (2022)
Malach, E., Shalev-Shwartz, S.: Decoupling “when to update” from “how to update”. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)
Mery, D., et al.: On skin lesion recognition using deep learning: 50 ways to choose your model. In: Wang, H., et al. (eds.) Image and Video Technology. LNCS, vol. 13763, pp. 103–116. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-26431-3_9
Nanni, L., Maguolo, G., Pancino, F.: Insect pest image detection and recognition based on bio-inspired methods. Eco. Inform. 57, 101089 (2020)
Norouzifard, M., Nemati, A., Abdul-Rahman, A., GholamHosseini, H., Klette, R.: A fused pattern recognition model to detect glaucoma using retinal nerve fiber layer thickness measurements. In: Lee, C., Su, Z., Sugimoto, A. (eds.) PSIVT 2019. LNCS, vol. 11854, pp. 1–12. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34879-3_1
Ren, F., Liu, W., Wu, G.: Feature reuse residual networks for insect pest recognition. IEEE Access 7, 122758–122768 (2019)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.: MobileNetV 2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, pp. 4510–4520. IEEE Computer Society, June 2018
Satyanarayana, G., Deshmukh, P., Das, S.K.: Vehicle detection and classification with spatio-temporal information obtained from CNN. Displays 75, 102294 (2022)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Sun, Z., et al.: Webly supervised fine-grained recognition: benchmark datasets and an approach. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10602–10611, October 2021
Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, pp. 1–9. IEEE Computer Society, June 2015
Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI 2017, pp. 4278–4284. AAAI Press (2017)
Wang, H., et al.: Score-CAM: score-weighted visual explanations for convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2020
Wang, J., et al.: Logo-2k+: a large-scale logo dataset for scalable logo classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, pp. 6194–6201 (2020)
Wu, X., Zhan, C., Lai, Y., Cheng, M., Yang, J.: IP102: a large-scale benchmark dataset for insect pest recognition. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, pp. 8779–8788. IEEE Computer Society, June 2019
Yang, Y., Wu, Q., Feng, X., Akilan, T.: Recomputation of the dense layers for performance improvement of DCNN. IEEE Trans. Pattern Anal. Mach. Intell. 42(11), 2912–2925 (2020)
Yang, Z., Luo, T., Wang, D., Hu, Z., Gao, J., Wang, L.: Learning to navigate for fine-grained classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 438–454. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_26
Yu, X., Zhao, Y., Gao, Y., Xiong, S.: MaskCOV: a random mask covariance network for ultra-fine-grained visual categorization. Pattern Recogn. 119, 108067 (2021)
Zhang, W., Yang, Y., Wu, J.: Deep networks with fast retraining (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Antioquia, A.M.C., Cordel II, M.O. (2024). HAHANet: Towards Accurate Image Classifiers with Less Parameters. In: Yan, W.Q., Nguyen, M., Nand, P., Li, X. (eds) Image and Video Technology. PSIVT 2023. Lecture Notes in Computer Science, vol 14403. Springer, Singapore. https://doi.org/10.1007/978-981-97-0376-0_19
Download citation
DOI: https://doi.org/10.1007/978-981-97-0376-0_19
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-0375-3
Online ISBN: 978-981-97-0376-0
eBook Packages: Computer ScienceComputer Science (R0)