Skip to main content

Spike-EFI: Spiking Neural Network for Event-Based Video Frame Interpolation

  • Conference paper
  • First Online:
Image and Video Technology (PSIVT 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14403))

Included in the following conference series:

  • 449 Accesses

Abstract

In order to model complex motions between video frames more accurately, many video frame interpolation methods have introduced event cameras to obtain additional high speed motion information. These methods use deep artificial neural networks (ANN) to process RGB images and event streams. However, traditional ANN-based methods are unable to effectively utilize the sparse and asynchronous nature of event streams, leading to unnecessary computations and increased energy consumption. As an alternative to ANN, spiking neural networks (SNN) can naturally process asynchronous and sparse event streams, reduce computational complexity and achieve lower energy consumption when combined with neuromorphic hardware. In this paper, we propose Spike-EFI, a lightweight fully spiking neural network for event-based video frame interpolation task. A spiking neural network with Leaky-Integrate and Fire (LIF) neuron is utilized to learn from a sensor fusion of RGB frames and event streams. This is also the first attempt to achieve video frame interpolation with neuromorphic computing paradigm. We trained and evaluated our network on public dataset, and the experimental results demonstrated that the proposed method has comparable performance to prior ANN-based methods. Benefitting from the event triggered computing paradigm of SNN, our method also achieves lower computational power consumption compared to ANN-based method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chi, Z., Mohammadi Nasiri, R., Liu, Z., Lu, J., Tang, J., Plataniotis, K.N.: All at once: temporally adaptive multi-frame interpolation with advanced motion modeling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 107–123. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_7

    Chapter  Google Scholar 

  2. Davies, M., et al.: Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38(1), 82–99 (2018)

    Article  Google Scholar 

  3. Gerstner, W., Kistler, W.M., Naud, R., Paninski, L.: Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition. Cambridge University Press (2014)

    Google Scholar 

  4. Hagenaars, J., Paredes-Vallés, F., De Croon, G.: Self-supervised learning of event-based optical flow with spiking neural networks. Adv. Neural. Inf. Process. Syst. 34, 7167–7179 (2021)

    Google Scholar 

  5. He, W., et al.: TimeReplayer: unlocking the potential of event cameras for video interpolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17804–17813 (2022)

    Google Scholar 

  6. Horowitz, M.: 1.1 computing’s energy problem (and what we can do about it). In: 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 10–14. IEEE (2014)

    Google Scholar 

  7. Huang, Z., Zhang, T., Heng, W., Shi, B., Zhou, S.: RIFE: real-time intermediate flow estimation for video frame interpolation. arXiv preprint arXiv:2011.06294 (2020)

  8. Jiang, H., Sun, D., Jampani, V., Yang, M.H., Learned-Miller, E., Kautz, J.: Super SloMo: high quality estimation of multiple intermediate frames for video interpolation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9000–9008 (2018)

    Google Scholar 

  9. Kim, S., Park, S., Na, B., Yoon, S.: Spiking-YOLO: spiking neural network for energy-efficient object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11270–11277 (2020)

    Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  11. Lee, C., Kosta, A.K., Zhu, A.Z., Chaney, K., Daniilidis, K., Roy, K.: Spike-FlowNet: event-based optical flow estimation with energy-efficient hybrid neural networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 366–382. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_22

    Chapter  Google Scholar 

  12. Lee, H., Kim, T., Chung, T.Y., Pak, D., Ban, Y., Lee, S.: AdaCoF: adaptive collaboration of flows for video frame interpolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5316–5325 (2020)

    Google Scholar 

  13. Lee, J.H., Delbruck, T., Pfeiffer, M.: Training deep spiking neural networks using backpropagation. Front. Neurosci. 10, 508 (2016)

    Article  Google Scholar 

  14. Lichtsteiner, P., Posch, C., Delbruck, T.: A 128 \(\times \) 128 120 db 15 \(\upmu \)s latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circuits 43(2), 566–576 (2008)

    Article  Google Scholar 

  15. Meyer, S., Wang, O., Zimmer, H., Grosse, M., Sorkinehornung, A.: Phase-based frame interpolation for video. IEEE (2015)

    Google Scholar 

  16. Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive convolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 670–679 (2017)

    Google Scholar 

  17. Paikin, G., Ater, Y., Shaul, R., Soloveichik, E.: EFI-Net: video frame interpolation from fusion of events and frames. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1291–1301 (2021)

    Google Scholar 

  18. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  19. Patel, K., Hunsberger, E., Batir, S., Eliasmith, C.: A spiking neural network for image segmentation. arXiv preprint arXiv:2106.08921 (2021)

  20. Rançon, U., Cuadrado-Anibarro, J., Cottereau, B.R., Masquelier, T.: StereoSpike: depth learning with a spiking neural network. IEEE Access 10, 127428–127439 (2022)

    Article  Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Shi, Z., Xu, X., Liu, X., Chen, J., Yang, M.H.: Video frame interpolation transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17482–17491 (2022)

    Google Scholar 

  23. Tulyakov, S., Bochicchio, A., Gehrig, D., Georgoulis, S., Li, Y., Scaramuzza, D.: Time Lens++: event-based frame interpolation with parametric non-linear flow and multi-scale fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17755–17764 (2022)

    Google Scholar 

  24. Tulyakov, S., et al.: Time Lens: event-based video frame interpolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16155–16164 (2021)

    Google Scholar 

  25. Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proc. IEEE 78(10), 1550–1560 (1990)

    Article  Google Scholar 

  26. Zhang, X., Yu, L.: Unifying motion deblurring and frame interpolation with events. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17765–17774 (2022)

    Google Scholar 

  27. Zhu, L., Wang, X., Chang, Y., Li, J., Huang, T., Tian, Y.: Event-based video reconstruction via potential-assisted spiking neural network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3594–3604 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, DS., Ma, D. (2024). Spike-EFI: Spiking Neural Network for Event-Based Video Frame Interpolation. In: Yan, W.Q., Nguyen, M., Nand, P., Li, X. (eds) Image and Video Technology. PSIVT 2023. Lecture Notes in Computer Science, vol 14403. Springer, Singapore. https://doi.org/10.1007/978-981-97-0376-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0376-0_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0375-3

  • Online ISBN: 978-981-97-0376-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics