Abstract
Human face mask detection leverages computer vision technology to discern whether individuals in images or videos are wearing masks. Ensuring proper mask usage is crucial in settings such as hospital operating rooms and flu clinics. As deep learning advances, face mask detection has emerged as a significant research area within the computer vision field. In this paper, we propose a deformable state-of-the-art (DSOTA) model based on Deformable ConvNets v2 (DCNv2) and YOLOv8 (i.e., You Only Look Once). We use this new model to improve the accuracy of face mask detection. Our experimental results show that the integration of DCNv2 and YOLOv8 significantly improves the accuracy of face mask detection. The average highest accuracy rate of the YOLOv8n model is 91.7%, and the average highest accuracy rate of the DSOTAn model is 94.4%. The average highest accuracy rate of the YOLOv8s model is 97.0%, and the average highest accuracy rate of the DSOTAs model is 97.4%. These promising results underscore the potential of our approach for practical applications and further exploration in the computer vision domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbasi, S., Abdi, H., Ahmadi, A.: A face-mask detection approach based on YOLO applied for a new collected dataset. In: International Computer Conference, Computer Society of Iran (CSICC), pp. 1–6. IEEE (2021)
Aboah, A., Wang, B., Bagci, U., Adu-Gyamfi, Y.: Real-time multi-class helmet violation detection using few-shot data sampling technique and YOLOv8. arXiv preprint arXiv:2304.08256 (2023)
Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)
Dai, J., et al.: Deformable convolutional networks. In: IEEE ICCV, pp. 764–773 (2017)
Degadwala, S., Vyas, D., Chakraborty, U., Dider, A.R., Biswas, H.: YOLO-v4 deep learning model for medical face mask detection. In: International Conference on Artificial Intelligence and Smart Systems (ICAIS), pp. 209–213. IEEE (2021)
Feng, C., Zhong, Y., Gao, Y., Scott, M.R., Huang, W.: TOOD: task-aligned one-stage object detection. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3490–3499 (2021)
Gao, J., Chen, Y., Wei, Y., Li, J.: Detection of specific building in remote sensing images using a novel YOLO-S-CIOU model. Case: Gas station identification. Sensors 21(4), 1375 (2021)
Gao, X., Nguyen, M., Yan, W.Q.: Face image inpainting based on generative adversarial network. In: International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 1–6. IEEE (2021)
Gao, X., Nguyen, M., Yan, W.Q.: A method for face image inpainting based on autoencoder and generative adversarial network. In: Wang, H., et al. (eds.) PSIVT 2022. LNCS, vol. 13763, pp. 24–36. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-26431-3_3
Jian, W., Lang, L.: Face mask detection based on Transfer learning and PP-YOLO. In: IEEE ICBAIE, pp. 106–109. IEEE (2021)
Jiang, P., Ergu, D., Liu, F., Cai, Y., Ma, B.: A review of YOLO algorithm developments. Procedia Comput. Sci. 199, 1066–1073 (2022)
Jindal, N., Singh, H., Rana, P.S.: Face mask detection in COVID-19: a strategic review. Multimedia Tools Appl. 81(28), 40013–40042 (2022)
Ju, R.Y., Cai, W.: Fracture detection in pediatric wrist trauma X-ray images using YOLOv8 algorithm. arXiv preprint arXiv:2304.05071 (2023)
Li, C., et al.: YOLOv6: a single-stage object detection framework for industrial applications. arXiv preprint arXiv:2209.02976 (2022)
Li, J., Liu, C., Lu, X., Wu, B.: CME-YOLOv5: an efficient object detection network for densely spaced fish and small targets. Water 14(15), 2412 (2022)
Li, X., Wang, W., Wu, L., Chen, S., Hu, X., Li, J., Tang, J., Yang, J.: Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection. Adv. Neural. Inf. Process. Syst. 33, 21002–21012 (2020)
Liu, F., Chen, R., Zhang, J., Xing, K., Liu, H., Qin, J.: R2YOLOX: a lightweight refined anchor-free rotated detector for object detection in aerial images. IEEE Trans. Geosci. Remote Sens. 60, 1–15 (2022)
Liu, R., Ren, Z.: Application of YOLO on mask detection task. In: IEEE ICCRD, pp. 130–136. IEEE (2021)
Pooja, S., Preeti, S.: Face mask detection using AI. Predictive and Preventive Measures for COVID-19 Pandemic, pp. 293–305 (2021)
Qi, J., Nguyen, M., Yan, W.Q.: Small visual object detection in smart waste classification using transformers with deep learning. In: Yan, W.Q., Nguyen, M., Stommel, M. (eds.) IVCNZ 2022. LNCS, vol. 13836, pp. 301–314. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-25825-1_22
Qi, J., Nguyen, M., Yan, W.Q.: Waste classification from digital images using ConvNeXt. In: Wang, H., et al. (eds.) PSIVT 2022. LNCS, vol. 13763, pp. 1–13. Springer, Cham (2022)
Redmon, J., Farhadi, A.: YOLO9000: Better, faster, stronger. In: IEEE CVPR, pp. 7263–7271 (2017)
Redmon, J., Farhadi, A.: YOLOv3: An incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Sun, Z., Li, P., Meng, Q., Sun, Y., Bi, Y.: An improved YOLOv5 method to detect tailings ponds from high-resolution remote sensing images. Remote Sensing 15(7), 1796 (2023)
Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696 (2022)
Wang, C.Y., et al.: CSPNet: a new backbone that can enhance learning capability of CNN. In: IEEE/CVF CVPR Workshops, pp. 390–391 (2020)
Wang, R., Shivanna, R., Cheng, D., Jain, S., Lin, D., Hong, L., Chi, E.: DCN v2: Improved deep & cross network and practical lessons for web-scale learning to rank systems. In: The Web Conference. pp. 1785–1797 (2021)
Wang, Y., Yan, G., Meng, Q., Yao, T., Han, J., Zhang, B.: DSE-YOLO: detail semantics enhancement YOLO for multi-stage strawberry detection. Comput. Electron. Agric. 198, 107057 (2022)
Wu, P., Li, H., Zeng, N., Li, F.: FMD-YOLO: an efficient face mask detection method for COVID-19 prevention and control in public. Image Vis. Comput. 117, 104341 (2022)
Xiao, B., Nguyen, M., Yan, W.Q.: Fruit ripeness identification using YOLOv8 model. Multimedia Tools and Applications, pp. 1–18 (2023)
Xue, Z., Lin, H., Wang, F.: A small target forest fire detection model based on YOLOv5 improvement. Forests 13(8), 1332 (2022)
Xue, Z., Xu, R., Bai, D., Lin, H.: YOLO-Tea: a tea disease detection model improved by YOLOv5. Forests 14(2), 415 (2023)
Yan, W.Q.: Introduction to Intelligent Surveillance: Surveillance Data Capture, Transmission, and Analytics. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10713-0
Yan, W.Q.: Computational Methods for Deep Learning: Theory, Algorithms, and Implementations. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-4823-9
Yu, J., Zhang, W.: Face mask wearing detection algorithm based on improved YOLO-v4. Sensors 21(9), 3263 (2021)
Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable ConvNets v2: more deformable, better results. In: IEEE/CVF CVPR, pp. 9308–9316 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Gao, X., Nguyen, M., Yan, W.Q. (2024). A High-Accuracy Deformable Model for Human Face Mask Detection. In: Yan, W.Q., Nguyen, M., Nand, P., Li, X. (eds) Image and Video Technology. PSIVT 2023. Lecture Notes in Computer Science, vol 14403. Springer, Singapore. https://doi.org/10.1007/978-981-97-0376-0_8
Download citation
DOI: https://doi.org/10.1007/978-981-97-0376-0_8
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-0375-3
Online ISBN: 978-981-97-0376-0
eBook Packages: Computer ScienceComputer Science (R0)