Abstract
Given an edge-weighted (metric/general) complete graph with n vertices, the maximum weight (metric/general) k-cycle/path packing problem is to find a set of \(\frac{n}{k}\) vertex-disjoint k-cycles/paths such that the total weight is maximized. In this paper, we consider approximation algorithms. For metric k-cycle packing, we improve the previous approximation ratio from 3/5 to 7/10 for \(k=5\), and from \(7/8\cdot (1-1/k)^2\) for \(k>5\) to \((7/8-0.125/k)(1-1/k)\) for constant odd \(k>5\) and to \(7/8\cdot (1-1/k+\frac{1}{k(k-1)})\) for even \(k>5\). For metric k-path packing, we improve the approximation ratio from \(7/8\cdot (1-1/k)\) to \(\frac{27k^2-48k+16}{32k^2-36k-24}\) for even \(10\ge k\ge 6\). For the case of \(k=4\), we improve the approximation ratio from 3/4 to 5/6 for metric 4-cycle packing, from 2/3 to 3/4 for general 4-cycle packing, and from 3/4 to 14/17 for metric 4-path packing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arkin, E.M., Hassin, R.: On local search for weighted k-set packing. Math. Oper. Res. 23(3), 640–648 (1998)
Bar-Noy, A., Peleg, D., Rabanca, G., Vigan, I.: Improved approximation algorithms for weighted 2-path partitions. Discret. Appl. Math. 239, 15–37 (2018)
Berman, P.: A d/2 approximation for maximum weight independent set in d-claw free graphs. Nord. J. Comput. 7(3), 178–184 (2000)
Berman, P., Karpinski, M.: 8/7-approximation algorithm for (1, 2)-TSP. In: SODA 2006, pp. 641–648. ACM Press (2006)
Chen, Y., Chen, Z., Lin, G., Wang, L., Zhang, A.: A randomized approximation algorithm for metric triangle packing. J. Comb. Optim. 41(1), 12–27 (2021)
Chen, Z., Nagoya, T.: Improved approximation algorithms for metric MaxTSP. J. Comb. Optim. 13(4), 321–336 (2007)
Chen, Z., Tanahashi, R., Wang, L.: An improved randomized approximation algorithm for maximum triangle packing. Discret. Appl. Math. 157(7), 1640–1646 (2009)
Chen, Z., Tanahashi, R., Wang, L.: Erratum to “an improved randomized approximation algorithm for maximum triangle packing” [Discrete Appl. Math. 157 (2009) 1640–1646]. Discret. Appl. Math. 158(9), 1045–1047 (2010)
Dudycz, S., Marcinkowski, J., Paluch, K., Rybicki, B.: A 4/5 - approximation algorithm for the maximum traveling salesman problem. In: Eisenbrand, F., Koenemann, J. (eds.) IPCO 2017. LNCS, vol. 10328, pp. 173–185. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59250-3_15
Gabow, H.N.: Implementation of algorithms for maximum matching on nonbipartite graphs. Ph.D. thesis, Stanford University (1974)
Hassin, R., Rubinstein, S.: An approximation algorithm for maximum packing of 3-edge paths. Inf. Process. Lett. 63(2), 63–67 (1997)
Hassin, R., Rubinstein, S.: A 7/8-approximation algorithm for metric max TSP. Inf. Process. Lett. 81(5), 247–251 (2002)
Hassin, R., Rubinstein, S.: An approximation algorithm for maximum triangle packing. Discret. Appl. Math. 154(6), 971–979 (2006)
Hassin, R., Rubinstein, S.: Erratum to “an approximation algorithm for maximum triangle packing”: [discrete applied mathematics 154 (2006) 971–979]. Discret. Appl. Math. 154(18), 2620 (2006)
Hassin, R., Rubinstein, S., Tamir, A.: Approximation algorithms for maximum dispersion. Oper. Res. Lett. 21(3), 133–137 (1997)
Hassin, R., Schneider, O.: A local search algorithm for binary maximum 2-path partitioning. Discret. Optim. 10(4), 333–360 (2013)
Kirkpatrick, D.G., Hell, P.: On the completeness of a generalized matching problem. In: STOC 1978, pp. 240–245. ACM (1978)
Kostochka, A., Serdyukov, A.: Polynomial algorithms with the estimates 3/4 and 5/6 for the traveling salesman problem of the maximum. Upravliaemie Syst. 26, 55–59 (1985)
Kowalik, L., Mucha, M.: Deterministic 7/8-approximation for the metric maximum TSP. Theor. Comput. Sci. 410(47–49), 5000–5009 (2009)
Lawler, E.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston (1976)
Li, S., Yu, W.: Approximation algorithms for the maximum-weight cycle/path packing problems. Asia-Pac. J. Oper. Res. 40(04), 2340003 (2023)
Manthey, B.: On approximating restricted cycle covers. SIAM J. Comput. 38(1), 181–206 (2008)
Monnot, J., Toulouse, S.: Approximation results for the weighted p\({}_{\text{4 }}\) partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)
Neuwohner, M.: An improved approximation algorithm for the maximum weight independent set problem in d-claw free graphs. In: STACS 2021, LIPIcs, vol. 187, pp. 53:1–53:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)
Neuwohner, M.: The limits of local search for weighted k-set packing. In: Aardal, K., Sanitá, L. (eds.) IPCO 2022. LNCS, vol. 13265, pp. 415–428. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06901-7_31
Neuwohner, M.: Passing the limits of pure local search for weighted k-set packing. In: SODA 2023, pp. 1090–1137. SIAM (2023)
Tanahashi, R., Chen, Z.Z.: A deterministic approximation algorithm for maximum 2-path packing. IEICE Trans. Inf. Syst. 93(2), 241–249 (2010)
Thiery, T., Ward, J.: An improved approximation for maximum weighted k-set packing. In: SODA 2023, pp. 1138–1162. SIAM (2023)
Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press, Cambridge (2011)
Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022)
Zhao, J., Xiao, M.: Improved approximation algorithms for cycle and path packings. CoRR abs/2311.11332 (2023)
van Zuylen, A.: Deterministic approximation algorithms for the maximum traveling salesman and maximum triangle packing problems. Discret. Appl. Math. 161(13–14), 2142–2157 (2013)
Acknowledgments
The work is supported by the National Natural Science Foundation of China, under grants 62372095 and 61972070.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhao, J., Xiao, M. (2024). Improved Approximation Algorithms for Cycle and Path Packings. In: Uehara, R., Yamanaka, K., Yen, HC. (eds) WALCOM: Algorithms and Computation. WALCOM 2024. Lecture Notes in Computer Science, vol 14549. Springer, Singapore. https://doi.org/10.1007/978-981-97-0566-5_14
Download citation
DOI: https://doi.org/10.1007/978-981-97-0566-5_14
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-0565-8
Online ISBN: 978-981-97-0566-5
eBook Packages: Computer ScienceComputer Science (R0)