Skip to main content

Improved Approximation Algorithms for Cycle and Path Packings

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2024)

Abstract

Given an edge-weighted (metric/general) complete graph with n vertices, the maximum weight (metric/general) k-cycle/path packing problem is to find a set of \(\frac{n}{k}\) vertex-disjoint k-cycles/paths such that the total weight is maximized. In this paper, we consider approximation algorithms. For metric k-cycle packing, we improve the previous approximation ratio from 3/5 to 7/10 for \(k=5\), and from \(7/8\cdot (1-1/k)^2\) for \(k>5\) to \((7/8-0.125/k)(1-1/k)\) for constant odd \(k>5\) and to \(7/8\cdot (1-1/k+\frac{1}{k(k-1)})\) for even \(k>5\). For metric k-path packing, we improve the approximation ratio from \(7/8\cdot (1-1/k)\) to \(\frac{27k^2-48k+16}{32k^2-36k-24}\) for even \(10\ge k\ge 6\). For the case of \(k=4\), we improve the approximation ratio from 3/4 to 5/6 for metric 4-cycle packing, from 2/3 to 3/4 for general 4-cycle packing, and from 3/4 to 14/17 for metric 4-path packing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arkin, E.M., Hassin, R.: On local search for weighted k-set packing. Math. Oper. Res. 23(3), 640–648 (1998)

    Article  MathSciNet  Google Scholar 

  2. Bar-Noy, A., Peleg, D., Rabanca, G., Vigan, I.: Improved approximation algorithms for weighted 2-path partitions. Discret. Appl. Math. 239, 15–37 (2018)

    Article  MathSciNet  Google Scholar 

  3. Berman, P.: A d/2 approximation for maximum weight independent set in d-claw free graphs. Nord. J. Comput. 7(3), 178–184 (2000)

    MathSciNet  Google Scholar 

  4. Berman, P., Karpinski, M.: 8/7-approximation algorithm for (1, 2)-TSP. In: SODA 2006, pp. 641–648. ACM Press (2006)

    Google Scholar 

  5. Chen, Y., Chen, Z., Lin, G., Wang, L., Zhang, A.: A randomized approximation algorithm for metric triangle packing. J. Comb. Optim. 41(1), 12–27 (2021)

    Article  MathSciNet  Google Scholar 

  6. Chen, Z., Nagoya, T.: Improved approximation algorithms for metric MaxTSP. J. Comb. Optim. 13(4), 321–336 (2007)

    Article  MathSciNet  Google Scholar 

  7. Chen, Z., Tanahashi, R., Wang, L.: An improved randomized approximation algorithm for maximum triangle packing. Discret. Appl. Math. 157(7), 1640–1646 (2009)

    Article  MathSciNet  Google Scholar 

  8. Chen, Z., Tanahashi, R., Wang, L.: Erratum to “an improved randomized approximation algorithm for maximum triangle packing” [Discrete Appl. Math. 157 (2009) 1640–1646]. Discret. Appl. Math. 158(9), 1045–1047 (2010)

    Google Scholar 

  9. Dudycz, S., Marcinkowski, J., Paluch, K., Rybicki, B.: A 4/5 - approximation algorithm for the maximum traveling salesman problem. In: Eisenbrand, F., Koenemann, J. (eds.) IPCO 2017. LNCS, vol. 10328, pp. 173–185. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59250-3_15

    Chapter  Google Scholar 

  10. Gabow, H.N.: Implementation of algorithms for maximum matching on nonbipartite graphs. Ph.D. thesis, Stanford University (1974)

    Google Scholar 

  11. Hassin, R., Rubinstein, S.: An approximation algorithm for maximum packing of 3-edge paths. Inf. Process. Lett. 63(2), 63–67 (1997)

    Article  MathSciNet  Google Scholar 

  12. Hassin, R., Rubinstein, S.: A 7/8-approximation algorithm for metric max TSP. Inf. Process. Lett. 81(5), 247–251 (2002)

    Article  MathSciNet  Google Scholar 

  13. Hassin, R., Rubinstein, S.: An approximation algorithm for maximum triangle packing. Discret. Appl. Math. 154(6), 971–979 (2006)

    Article  MathSciNet  Google Scholar 

  14. Hassin, R., Rubinstein, S.: Erratum to “an approximation algorithm for maximum triangle packing”: [discrete applied mathematics 154 (2006) 971–979]. Discret. Appl. Math. 154(18), 2620 (2006)

    Google Scholar 

  15. Hassin, R., Rubinstein, S., Tamir, A.: Approximation algorithms for maximum dispersion. Oper. Res. Lett. 21(3), 133–137 (1997)

    Article  MathSciNet  Google Scholar 

  16. Hassin, R., Schneider, O.: A local search algorithm for binary maximum 2-path partitioning. Discret. Optim. 10(4), 333–360 (2013)

    Article  MathSciNet  Google Scholar 

  17. Kirkpatrick, D.G., Hell, P.: On the completeness of a generalized matching problem. In: STOC 1978, pp. 240–245. ACM (1978)

    Google Scholar 

  18. Kostochka, A., Serdyukov, A.: Polynomial algorithms with the estimates 3/4 and 5/6 for the traveling salesman problem of the maximum. Upravliaemie Syst. 26, 55–59 (1985)

    MathSciNet  Google Scholar 

  19. Kowalik, L., Mucha, M.: Deterministic 7/8-approximation for the metric maximum TSP. Theor. Comput. Sci. 410(47–49), 5000–5009 (2009)

    Article  MathSciNet  Google Scholar 

  20. Lawler, E.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston (1976)

    Google Scholar 

  21. Li, S., Yu, W.: Approximation algorithms for the maximum-weight cycle/path packing problems. Asia-Pac. J. Oper. Res. 40(04), 2340003 (2023)

    Article  MathSciNet  Google Scholar 

  22. Manthey, B.: On approximating restricted cycle covers. SIAM J. Comput. 38(1), 181–206 (2008)

    Article  MathSciNet  Google Scholar 

  23. Monnot, J., Toulouse, S.: Approximation results for the weighted p\({}_{\text{4 }}\) partition problem. J. Discrete Algorithms 6(2), 299–312 (2008)

    Article  MathSciNet  Google Scholar 

  24. Neuwohner, M.: An improved approximation algorithm for the maximum weight independent set problem in d-claw free graphs. In: STACS 2021, LIPIcs, vol. 187, pp. 53:1–53:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

    Google Scholar 

  25. Neuwohner, M.: The limits of local search for weighted k-set packing. In: Aardal, K., Sanitá, L. (eds.) IPCO 2022. LNCS, vol. 13265, pp. 415–428. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06901-7_31

    Chapter  Google Scholar 

  26. Neuwohner, M.: Passing the limits of pure local search for weighted k-set packing. In: SODA 2023, pp. 1090–1137. SIAM (2023)

    Google Scholar 

  27. Tanahashi, R., Chen, Z.Z.: A deterministic approximation algorithm for maximum 2-path packing. IEICE Trans. Inf. Syst. 93(2), 241–249 (2010)

    Article  Google Scholar 

  28. Thiery, T., Ward, J.: An improved approximation for maximum weighted k-set packing. In: SODA 2023, pp. 1138–1162. SIAM (2023)

    Google Scholar 

  29. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  30. Zhao, J., Xiao, M.: Improved approximation algorithms for capacitated vehicle routing with fixed capacity. CoRR abs/2210.16534 (2022)

    Google Scholar 

  31. Zhao, J., Xiao, M.: Improved approximation algorithms for cycle and path packings. CoRR abs/2311.11332 (2023)

    Google Scholar 

  32. van Zuylen, A.: Deterministic approximation algorithms for the maximum traveling salesman and maximum triangle packing problems. Discret. Appl. Math. 161(13–14), 2142–2157 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The work is supported by the National Natural Science Foundation of China, under grants 62372095 and 61972070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyu Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, J., Xiao, M. (2024). Improved Approximation Algorithms for Cycle and Path Packings. In: Uehara, R., Yamanaka, K., Yen, HC. (eds) WALCOM: Algorithms and Computation. WALCOM 2024. Lecture Notes in Computer Science, vol 14549. Springer, Singapore. https://doi.org/10.1007/978-981-97-0566-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0566-5_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0565-8

  • Online ISBN: 978-981-97-0566-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics