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Abstract. We study the problem of black hole search by a set of mobile
agents, where the underlying graph is a dynamic cactus. A black hole is a
dangerous vertex in the graph that eliminates any visiting agent without
leaving any trace behind. Key parameters that dictate the complexity of
finding the black hole include: the number of agents required (termed as
size), the number of moves performed by the agents in order to determine
the black hole location (termed asmove) and the time (or round) taken to
terminate. This problem has already been studied where the underlying
graph is a dynamic ring [9]. In this paper, we extend the same problem
to a dynamic cactus. We introduce two categories of dynamicity, but
still the underlying graph needs to be connected: first, we examine the
scenario where, at most, one dynamic edge can disappear or reappear
at any round. Secondly, we consider the problem for at most k dynamic
edges. In both scenarios, we establish lower and upper bounds for the
necessary number of agents, moves and rounds.

Keywords: Black hole search, Dynamic cactus graph· Dynamic net-
works · Time-varying graphs · Mobile agents computing

1 Introduction

We study the black hole search problem (also termed as BHS) in a dynamic
cactus graph, where edges can appear and disappear i.e., goes missing over time
so the underlying graph remains connected. More precisely, the network is a
synchronous cactus graph where one of the vertices (or nodes) is a malicious
node that eliminates visiting agents without any trace of their existence upon
arrival on such nodes; that node is termed as Black Hole [10]. This scenario
frequently arises within networked systems, particularly in situations requiring
the safeguarding of agents from potential host attacks. Presently, apart from
the research paper concerning ring networks [9], there exists limited knowledge
regarding this phenomenon when the network exhibits dynamic characteristics.
Therefore, the focus of our study is to expand upon our findings in this context.
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In our investigation, we consider a collection of mobile agents, all of whom
execute the same algorithm synchronously. Initially, these agents are positioned
at a node that is confirmed to be free from any black hole threat; these nodes
are referred to as ‘safe nodes’. The primary objective is to efficiently determine
the location of the black hole within the network in the shortest possible time
while ensuring at least one agent survives and possesses knowledge of the black
hole’s whereabouts.

Related Work. The black hole search problem is well-studied in varying under-
lying topologies such as rings, grids, torus, etc. This problem is first introduced
by Dobrev et al. [10], where they solved in static arbitrary topology. Further,
they give tight bounds on the number of agents and provide cost complexity of
the size-optimal solution. After this seminal paper, there has been a plethora of
work done in this domain under different graph classes such as trees [5], rings
[2,11,12], tori [3,22] and in graphs of arbitrary topology [4,10]. Moreover, two
variations of this problem are mainly studied in the literature. First, when the
agents are initially co-located [5] and second, when the agents are initially scat-
tered [3,11] in the underlying network. Now, in all the above literature, the study
has been performed when the underlying graph is static.

While most of the study has been done on static networks, very little litera-
ture is known about black hole search especially in dynamic graphs. The study
of mobile agents in dynamic graphs is a fairly new area of research. Previously,
the problem of exploration has been studied in dynamic rings [7,17,21], torus
[16], cactuses [18] and in general graphs [15]. In addition to exploration, there
are other problems related to mobile agents studied in dynamic networks such
as, gathering [8], compacting of oblivious agents [6], dispersion of mobile agents
[1,19]. Further, Flocchini et al. [13] studied the black hole search problem in a
different class of dynamic graphs, defined as periodically varying graphs, they
showed the minimum number of agents required to solve this problem is γ + 1,
where γ is the minimum number of carrier stops at black holes. Di Luna et al. [9],
studied the black hole search problem in a dynamic ring, where they established
lower bounds and give size-optimal algorithms in terms of agents, moves and
rounds in two communication models. In this paper, we aim to solve a similar
problem, where we want to determine the position of a black hole with the least
number of agents, but in our case, we have considered the underlying topology
to be a dynamic cactus graph.

Our Contributions. We obtain the following results when the cactus graph
has at most one dynamic edge at any round.

– Establish the impossibility to find a black hole in a dynamic cactus with 2
agents.

– With 3 agents we establish lower bound of Ω(n1.5) rounds, Ω(n1.5) moves,
and we also establish upper bound of O(n2) rounds and O(n2) moves.

– With 4 agent improved lower bounds are Ω(n) rounds and Ω(n) moves.
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Next, when the cactus graph has at most k (k > 1) dynamic edge at any round.

– Establish the impossibility to find the black hole with k + 1 agents.
– With k + 2 agents we establish lower bound of Ω((n+ 2− 3k)

1.5
) rounds

and Ω((n+ 2− 3k)
1.5

+ 2k) moves.
– With 2k+3 agents improved lower bounds are Ω(n+2− 3k) rounds, Ω(n+

2−k) moves, and we establish an upper bound of O(kn) rounds and O(k2n)
moves.

# DE # Agents Moves Rounds

1 3 Ω(n1.5) Ω(n1.5) LB (Cor 1 & Thm 2)
3 O(n2) O(n2) UB (Thm 9)
4 Ω(n) Ω(n) LB (Thm 3)

k k + 2 Ω((n+ 2− 3k)1.5 + 2k) Ω((n+ 2− 3k)1.5) LB (Cor 2 & Thm 6)
2k + 3 Ω(n+ 2− k) Ω(n+ 2− 3k) LB (Thm 7)
2k + 3 O(k2n) O(kn) UB (Thm 10 & Thm 11)

Table 1: Summary of Results (k > 1), where LB, UB and DE represent lower
bound, upper bound and dynamic edge, respectively.

Organization: Rest of the paper is organized as follows. In section 2, we discuss
the model and preliminaries. Section 3, we give the lower bounds. In section 4,
we present the algorithm and its correctness for both the single and multiple
dynamic edge cases and finally concluding in section 5.

2 Model and Preliminaries

Dynamic Graph Model: We adapt the synchronous dynamic network model
by Kuhn et al. [20] to define our dynamic cactus graph G. The vertices (or nodes)
in G are static, whereas the edges are dynamic i.e., the edges can disappear (or in
other terms go missing) and reappear at any round. The dynamicity of the edges
holds as long as the graph is connected. The dynamic cactus graph G = (V, E)
is defined as a collection of undirected cactus graphs < G0, G1, · · · , Gr, · · · >,
where Gr = (V,Er) is the graph at round r, |V | = n and E = ∪∞

r=0Er, where
|Er| = mr denotes the number of edges in Gr. The adversary maintains the
dynamicity of G, by disappearing or reappearing certain edges at any round r
such that the underlying graph is connected. This model of dynamic networks
is studied in [20] and is termed as a 1-interval connected network. The degree
of a node u ∈ G is denoted by deg(u), in other words, deg(u) denotes the degree
of the node u in G0. The maximum degree of the graph G is denoted as ∆.
The vertices (or nodes) in G are anonymous, i.e., they are unlabelled, although,
the edges are labelled, an edge incident to u is labelled via the port numbers
0, · · · , deg(u) − 1. The ports are labelled in ascending order along the counter-
clockwise direction, where a port with port number i denotes the port number
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corresponding to the i-th incident edge at u in the counter-clockwise direction.
Any edge e = (u, v) is labelled by two ports, one among them is incident to u
and the other incident to v, they have no relation in common (refer to Fig. 1).
Any number of agents can pass through an edge concurrently. Each node in G
has local storage in the form of a whiteboard, where the size of the whiteboard
at a node v ∈ V is O(deg(v)(log deg(v) + k log k)), where deg(v) is the degree
of v and k is the atmost number of missing edge. The whiteboard is essential to
store the list of port numbers attached to the node. Any visiting agent can read
and/or write travel information corresponding to port numbers. Fair mutual
exclusion to all incoming agents restricts access to the whiteboard. The network
G contains a malicious node termed as black hole, which eliminates any incoming
agent without leaving any trace of its existence.
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Fig. 1: A port labelled Cactus Graph is depicted where an edge (v7, v8) is missing.

Agent: Let A = {a1, · · · , am} be a set of m ≤ n agents, they are initially
co-located at a safe node termed as home. Each agent has a distinct Id of size
⌊logm⌋ bits taken from the set [1,m] where, each agent is a t-state automata,
with local storage of O(n log∆) bits of memory, where t ≥ αn log∆ and α is
any positive integer. The agents visiting a node knows the degree of that node
and also can determine the missing edges at that particular node, based on the
whiteboard information. The agent while moving from u to v along the edge
e knows the port along which it left u and the port along which it entered v.
Further, the agents can see the Ids of other agents residing at the same node
and can communicate with them.

Round: The agents operate in synchronous rounds, where each agent gets ac-
tivated in each round. At any time an agent ai ∈ A gets activated, and they
perform the following steps in a round: “Communicate-Compute-Move” (CCM),
while it is active. The steps are defined as follows:
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– Communication: Agents can communicate among themselves when they are
at the same node at the same time. They can communicate via whiteboard
as well. In this step, agents can also observe their memory.

– Compute: An agent based on the gathered information, local snapshot (i.e.,
information gathered on whether any other agent is present at the current
node), internal memory and contents of a whiteboard, either decides to stay
or choose the port number in case it decides to move.

– Move: The agent moves along the chosen port to a neighboring port, if it
decides to move. While it starts to move, the agent writes the information
in its memory and also writes on the whiteboard of its current node.

An agent takes one unit of time to move from a node u to another node v fol-
lowing the edge e = (u, v).

Time and Move Complexity: Since the agents operate in synchronous rounds,
each agent gets activated at each round to perform one CCM cycle synchronously.
So, the time taken by the algorithm is measured in terms of rounds. Another pa-
rameter is move complexity, which counts the total number of moves performed
by the agents during the execution of the algorithm.

Configuration: We define Cr to be the configuration at round r which holds the
following information: the contents in the whiteboard at each node, the contents
of the memory of each agent and the locations of the agent at the start of round
r.

So, C0 in the initial configuration at the start of an algorithm H, whereas
Cr is the configuration obtained from Cr−1 after execution of the algorithm H
at round r.

We recall next the notions of cautious, pendulum and pebble walk.
Cautious Walk [9]. This is a movement strategy for agents in a network with
a black hole, which ensures that at least two agents can travel together so that
only one of them may be destroyed by the black hole, while the other survives.
This is done as follows. If two agents a1 and a2 are at a safe node u, a1 goes
to an adjacent node v and returns, while a2 waits at u. If a1 returns to node
u at the next round, then both a1 and a2 can safely travel together to node
v. Otherwise, if at the next round, a1 has not returned to node u, a2 knows
that either edge (u, v) disappeared (which can be discovered by looking at the
corresponding port) or that v contains the black hole.

Pendulum Walk [9]. From a high-level perspective, an agent a1 travels back
and forth, increasing the number of hops at each movement, and always reports
back to another agent a2 (which may be referred to as a “witness” agent). More
precisely, let us consider that two agents a1 and a2 are located at a node u. Now,
a1 decides to move one hop along the edge (u, v) and reaches a node v. If v is
safe, then a1 returns back to u to inform a2 that v is safe. Next, a1 decides to
move two hops along the edge (u, v) and (v, w), thus reaching node w. If w is
safe, then a1 returns back to u via v. In general, a1 in each movement incre-
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ments the hop count by one, and at some round reaches a node z along the path
P = u → v → w → · · · → z. If z is safe, then it returns to u.

Pebble Walk: This walk is a special case of pendulum walk. In this case, as well
an agent a1 travels to and fro, but unlike pendulum walk whenever a1 reaches a
new node it does not report back to another agent (or witness agent).

More precisely, let us consider an agent a1 is currently at a node u. Now,
a1 decides to move one hop to an adjacent node v using the edge (u, v). If v is
safe, then it returns back to u. Further, a1 again reaches v and decides to move
another one hop from v to a new node w, following a similar strategy. So, the
path followed by a1 to reach w is denoted as P = u → v → u → v → w. In
general, a1 moves one hop to a new node by similar to and fro movement from
the last explored node.

3 Lower Bound Results

In this section, we first study the lower bound on the number of agents, move
and round complexities required to solve the BHS problem when at most one
edge can disappear or appear in a round. Then we generalize this idea for the
case when at most k edges can disappear or appear in a round such that the
underlying graph remains connected.

3.1 Lower Bound results on Single Dynamic Edge

Here, we present all the results related to a dynamic cactus graph when at most
one edge missing at any round.

Theorem 1 (Impossibility for single dynamic edge). Given a dynamic
cactus graph G of size n > 3 with at most one edge which can disappear at
any round such that the underlying graph is connected. Let the agents have the
knowledge that the black hole is located in any of the three consecutive nodes
S = {v1, v2, v3} inside a cycle of G. Then it is not possible for two agents to
successfully locate the black hole position. The impossibility holds even if the
nodes are equipped with a whiteboard.

The above theorem is a consequence of Lemma 1 in [9].

Corollary 1 (Lower bound for single dynamic edge). To locate the black
hole in a dynamic cactus graph G with at most one edge missing at any round,
any algorithm requires at least 3 agents to solve the black hole search problem in
G.

Lemma 1 ([9]). If an algorithm solves black hole search with O(n ·f(n)) moves
with three agents, then there exists an agent that explores a sequence of at least
Ω( n

f(n) ) nodes such that:
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– The agent does not communicate with any other node while exploring any
node in the sequence.

– The agent visits at most n
4 nodes outside the sequence while exploring any

node in the sequence.

This lemma holds even if the nodes are equipped with whiteboards.

In the next theorem, we give a lower bound on the move and round complexity
required by any algorithm in order to solve the black hole search problem in a
dynamic cactus.

Theorem 2. Given a dynamic cactus graph G, with at most one missing edge at
any round. In the presence of a whiteboard, any algorithm H solves the black hole
search problem with three agents in Ω(n1.5) rounds and Ω(n1.5) moves, when the
agents have distinct IDs and they are co-located.

The above theorem is a consequence of theorem 6 in [9]. The next theorem,
gives an improved lower bound on the move and round complexity when 4 agents
try to locate the black hole instead of 3.

Theorem 3. Given a dynamic cactus graph G, with at most one dynamic edge
at any round. In the presence of whiteboard, any algorithm H solves the black
hole search problem with four agents in Ω(n) rounds and Ω(n) moves, when the
agents have distinct Ids and they are co-located.

Proof. Let a1, a2, a3 and a4 are the four agents trying to find the black hole in
G. Consider Ck be a cycle in G (refer to Fig. 3) and yk be the black hole node.
Now, suppose a1 enters the black hole and Q be the set of consecutive nodes
along which a1, before entering the black hole has written its exact location on
the whiteboard, so whenever an agent visits any of these nodes, it knows the
exact location of the black hole and terminates. Let eq be the edge separating
the black hole and Q with the rest of the graph. Now, the adversary has the
ability to restrict any agent from visiting the set of nodes in Q by removing eq.
On the contrary, at any round, if no agent is trying to visit a node in Q, whereas
establishing the black hole location along the counter-clockwise direction, then
the adversary can restrict the agent visiting such a node by removing an edge,
such as ecc. So, the only possibility is while an agent always tries to visit a node
in Q, the remaining two agents can correctly locate the black hole location while
traversing a counter-clockwise direction in Ck, in at least n rounds. Moreover,
since at any round, a constant number of agents are moving. Hence, in order to
successfully locate the black hole location with 4 agents, any algorithm requires
Ω(n) rounds and Ω(n) moves. ⊓⊔

The next observation gives a brief idea about the movement of the agents
on a cycle inside a dynamic cactus graph. It states that, when a single agent is
trying to explore any unexplored cycle, the adversary has the power to confine
the agent on any single edge of the cycle. Moreover, in case of multiple agents
trying to explore a cycle inside a cactus graph, but their movement is along one
direction, i.e., either clockwise or counter-clockwise, then also the adversary has
the power to prevent the team of agents from visiting further unexplored nodes.
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Observation 4 Given a dynamic cactus graph G, and a cut U (with |U | > 1)
of its footprint connected by edges e1 in the clockwise direction and e2 in the
counter clockwise direction to the nodes in V \U . If we assume that all the agents
at round r are at U , and there is no agent which tries to cross to V \U along e1
and an agent tries to cross along e2, then the adversary may prevent agents to
visit nodes outside U .

The above observation follows from observation 1 of [9]. The next lemma
follows from the structural property of a cactus graph.

u

v

v0 v1

Half-1

Half-1

Half-2

Fig. 2: Represents that any u to
v path either passes through v0
or v1.

u1v1

w1
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w2 v2
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v3
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home

uk

vk

wkxk

yk
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C1

C2

C3

Ck

u3
v3

w3

C3

Q

eqecc

Fig. 3: A cactus graph, with k different
cycles, where red nodes in Ck depicts
possible location of the black hole.

Lemma 2. Consider three consecutive nodes {v0, v, v1} in a cactus graph G,
then any path from u to v in G must pass through either v0 or v1.

Proof. We prove the above claim by contradiction. Suppose there exists a u to
v path which neither passes through v0 nor v1, so in order to have an alternate
path which does not pass through v0 or v1, implies that there must be at least
one edge or a path passing from half-1 to half-2 (refer to Fig. 2), where we define
half-1 to be the subgraph on and above the horizontal half-line passing through
v, whereas half-2 is the subgraph below the horizontal half-line passing through
v. Now, the presence of such an edge or path, implies that there is at most one
common edge between two cycles, and this violates the characteristic of a cactus
graph. Hence, there cannot be any such u to v path which neither passes through
v0 nor v1. ⊓⊔

3.2 Lower bound results for multiple dynamic edges

Here, we present all the lower bound results for a dynamic cactus graph G, when
at most k edges are missing at any round.
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Theorem 5 (Impossibility for multiple dynamic edges). Given, a dy-
namic cactus graph G with at most k dynamic edges at any round. It is impos-
sible for k+ 1 agents, to successfully locate the black hole position, regardless of
the knowledge of n, k and the presence of a whiteboard at each node.

Proof. We prove the above statement by contradiction. Let us consider a dy-
namic cactus graph G (refer to Fig. 3) of n vertices, in which at most k edges are
dynamic at any round. The graph G contains Ci cycles, where i ∈ {1, · · · , k},
in which except the last cycle Ck which of length n+ 2 − 3k, every other cycle
is of length 3. Now, suppose there exists an algorithm H, which successfully
locates the black hole position in G with a set of k + 1 agents, {a1, · · · , ak+1}.
Each agent is initially located at home, and after following the algorithm H, the
agents enter a configuration, where an agent ai reaches a node vi or wi inside
Ci, where i ∈ {1, 2, · · · , k− 1} and the remaining two agents enter the cycle Ck.
Suppose, the black hole is located at any one among the three consecutive nodes
S = {wk, xk, yk}, of which the agents have no idea. Since the adversary can
disappear and reappear at most k edges at any round, hence, it has the ability
to restrict each ai inside Ci by alternating its position between vi and wi, by
removing the edge (ui, vi) and (ui, wi) alternatively (where i ∈ {1, · · · , k − 1}).
So, the remaining agents ak and ak+1 have no other choice but to explore Ck.
They cannot explore a node in S together for the first time, as the adversary
may place the black hole, eliminating both of them, whereas the other agents
have no idea of the location of the black hole as they are unable to come out
of Ci (i ∈ {1, · · · , k − 1}). Let us consider, without loss of generality ak is the
first to enter S, i.e., a node wk at some round r or both agents enter a node
in S at round r (ak enters wk and ak+1 enters yk). At this point, regardless of
the position of ak+1, the adversary removes the edge (vk, wk). Now, in any case,
ak cannot communicate with ak+1 in the presence of a whiteboard as well, as
on one side there is a black hole and on the other side, there is a missing edge.
So, if wk is a safe node, then a1 has no other option but to visit xk at some
round. In the meantime, each of the remaining agents ai are stuck inside Ci

(i ∈ {1, · · · , k − 1}), respectively. Suppose if yk is safe, then ak+1 can convey
this information to at least one of the agents ai by writing this information in the
whiteboard of either ui or wi (where 1 ≤ i ≤ k− 1). So, now the only possibility
for ak+1 is to visit the next node xk, if xk is the black hole, then the remaining
k − 1 agents cannot identify among xk and wk which is indeed the black hole
node. The reason is, if wk is the black hole, then ak has already been eliminated,
in this situation, the adversary can remove the edge (yk, xk), which in turn re-
stricts ak+1 to come out of Ck and convey this information to remaining k − 1
agents. Now, since none of the remaining agents can come out of their respective
cycles, regardless of the whiteboard information, left by the agents ak and ak+1

before entering the black hole node, none of the remaining agents cannot figure
out the exact location among xk and wk which is the correct black hole position.
This leads to a contradiction. ⊓⊔

Corollary 2 (Lower bound for k dynamic edges). To locate the black hole
in a dynamic cactus graph G with at most k dynamic edges at any round, any
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algorithm requires at least k+ 2 agents to solve the black hole search problem in
G.

The next two theorems give lower bound and improved lower bound complexity
with k + 2 and 2k + 3 agents, respectively.

Theorem 6. Given a dynamic cactus graph G, with at most k dynamic edges
at any round. In presence of whiteboard, any algorithm H which solves the black
hole search problem with k + 2 agents requires Ω((n+ 2− 3k)

1.5
) rounds and

Ω((n+ 2− 3k)
1.5

+ 2k) moves when the agents have distinct Ids and they are
co-located.

Proof. We prove the above statement by contradiction, we suppose that there ex-
ists an algorithm H which finds the black hole in o((n+ 2− 3k)

1.5
) rounds. Now,

consider the graph G (refer to Fig. 3) of k-cycles, where |Ci| = 3 (1 ≤ i ≤ k− 1)
and |Ck| = n + 2 − 3k, in which the set of agents A = {a1, a2, · · · , ak+2} are
initially co-located at home. Suppose, while executing the algorithm H, they
enter a configuration, in which ai gets stuck inside Ci (1 ≤ i ≤ k − 1), whereas
ak, ak+1 and ak+2 enter Ck. Now, by theorem 6 in [9], a set of 3 agents re-

quires Ω((n+ 2− 3k)
1.5

) rounds to correctly locate the black hole inside Ck,
this leads to a contradiction. Moreover, a constant number of agents move in
Ω((n+ 2− 3k)

1.5
) rounds, whereas to enter this configuration starting from

home, at least 2k moves are required. Hence, the team of k + 2 agents require
Ω((n+ 2− 3k)

1.5
) rounds and Ω((n+ 2− 3k)

1.5
+ 2k) moves to find the black

hole. ⊓⊔

Theorem 7. Any algorithm H in the presence of whiteboard which solves the
black hole search problem with 2k + 3 agents in a dynamic cactus graph with at
most k dynamic edges at any round requires Ω(n+2−3k) rounds and Ω(n+2−k)
moves when the agents have distinct Ids and they are co-located.

Proof. We prove the above statement by contradiction, we suppose H finds the
black hole in o(n+ 2− 3k) rounds. Now, suppose G be the graph (refer to Fig.
3) with k-cycles, where |Ci| = 3, ∀ 1 ≤ i ≤ k − 1 and |Ck| = n + 2 − 3k,
and consider the agents to be initially co-located at home. Now, suppose the
agents while executing H enter a configuration, where ai gets stuck in Ci, where
1 ≤ i ≤ k − 1. In this situation, the remaining k + 4 agents try to explore
Ck, so by theorem 3 we know that it takes four agents among the k + 4 agents
to successfully locate the black hole in Ω(n + 2 − 3k) rounds. The bound on
the number of moves comes from the fact that at least 2k additional moves are
required to attain this configuration, whereas a constant number of agents moves
in Ω(n + 2 − 3k) rounds. Hence, any algorithm requires Ω(n + 2 − 3k) rounds
and Ω(n+ 2− k) moves. ⊓⊔

4 Black Hole Search in Dynamic Cactus

In this section, we first present an algorithm to find the black hole in the presence
of at most one dynamic edge, and then we present an algorithm to find the black
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hole in the presence of at most k dynamic edges. The number of agents required
to find the black hole is presented and further, the move and round complexities
are analyzed for each algorithm.

4.1 Black Hole Search in Presence of Single Dynamic Edge

In this section, we present two black hole search algorithms, one for the agents
and the other for the LEADER, in the presence of at most one dynamic edge in
a cactus graph. Our algorithms require each node v to have some local storage
space, called whiteboard. Our algorithms find the black hole search problem with
the help of 3 agents a1, a2 and a3, respectively. Among these three agents, we
consider a3 to be the LEADER. The task of the LEADER is different from
the other two agents. The fundamental task of LEADER is either to instruct
an agent to perform a certain movement or to conclude that a certain agent has
entered the black hole. In contrast, the agent’s task is to visit nodes that are
not explored. More precisely, our algorithm for LEADER is SingleEdgeBH-
SLeader and for the agents a1 and a2 is SingleEdgeBHSAgent. Next, we
discuss the contents of the whiteboard.
Whiteboard: For each node v ∈ G, a whiteboard is maintained with a list of
information for each port of v. For each j, where j ∈ {0, · · · , deg(v) − 1}, an
ordered tuple (f(j), Last.LEADER) is stored on it, where the function f is
defined as follows: f : {0, · · · , deg(v)− 1} −→ {⊥, 0, 1}∗,

f(j) =



⊥, if j is yet to be explored by any agent

0 ◦A, if the set of agents in A has visited j but cannot

fully explore the sub-graph originating from j

1, if the sub-graph corresponding to j is fully explored

and no agent is stuck

The symbol ‘◦′ refers to the concatenation of two binary strings. We define A to
be the set of agents which has visited that particular port. More precisely, if a1
and a2 both visits the port j, then we have A = {a1, a2}. We discuss the entries
on the whiteboard with the help of the following example. Consider a port j at a
node u, along which only a1 has passed, but is unable to completely explore the
sub-graph originating from j. In this case, the function f(j) returns the binary
string 001, where the first 0 represents that the sub-graph originating from j is
not fully explored, and the next 01 represents the Id of a1, so we have A = {a1}.

The entry Last.LEADER stores the bit 1 if j is the last visited port in v by
the LEADER, otherwise, it stores 0.

Each agent (i.e., a1 and a2) performs a t-Increasing-DFS [14], where the
movement a1 and a2 can be divided in to two categories explore and trace:

– In explore, an agent performs either cautious walk or pendulum walk depend-
ing on the instruction of the LEADER. In this case, an agent visits a node
for the first time, i.e., it only chooses a port j, such that f(j) = ⊥.
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– In trace, an agent performs pendulum walk, where it visits a node that has
already been visited by the other agent. In this case, an agent a1 (or a2)
chooses a port j, where f(j) = 0 ◦A and A = {a2} (or A = {a1}).

The task of the LEADER can be explained as follows:

– Instructs a1 or a2 to perform either cautious or pendulum walk.
– Maintains the variables lengthai

and Pai
(ai ∈ {1, 2}), while ai is perform-

ing pendulum walk. The LEADER increments lengthai
by 1, whenever ai

traverses a new node and report this information to LEADER. Moreover,
Pai

is the sequence port traversed by ai from the initial node from which it
started its pendulum walk to the current explored node.

– It also maintains the variables Lai
and PLai

, where Lai
calculates the length

of the path traversed by LEADER away from the initial position of ai and
PLai

stores the sequence of these ports.
– Lastly, terminates the algorithm whenever it knows the black hole position.

An agent a1 or a2 fails to report to LEADER, for one of the following reasons:
it has either entered the black hole or it has encountered a missing edge along
its forward movement.

The algorithm SingleEdgeBHSLeader assigns only the LEADER to com-
municate with the remaining agents, in order to instruct them regarding their
movements, whereas the agents a1 and a2 do not communicate among them-
selves. The agents ai (where i ∈ {1, 2}) stores Pai

while performing pendulum
walk. For example, let a1 and LEADER are co-located at h in Fig. 1. Now, sup-
pose a1 starts pendulum walk and reaches v1. Correspondingly, Pa2 gets updated
to Pa2

∪ 0.
Next, we discuss in detail the description of the algorithm.

Algorithm Description: In this section, we give a high-level description of the
algorithms SingleEdgeBHSAgent and SingleEdgeBHSLeader.

Description of SingleEdgeBHSAgent(): This algorithm is executed by the
agents a1 and a2, in which they are either instructed to perform cautious or pen-
dulum walk. The agents perform t-Increasing-DFS [14] strategy for deciding
the next port, further that port is indeed chosen by the agent for its movement
based on the whiteboard information. Before commencing the algorithm, each
node is labelled as (⊥, 0). Initially, the agents start from home, where without
loss of generality, a1 is instructed to perform cautious and a2 is instructed to
perform pendulum walk. Let us consider a1 is at a node u, then the decision
taken by a1 based on the contents of the whiteboard is as follows:

– If ∃ at least one port with f() value is ⊥ and i being the minimum among
them, then choose that port and move to its adjacent port u′ via i from u.

– If there is no such port i at u, with f(i) = ⊥, then it backtracks accompa-
nying the LEADER to a node where ∃ such i with f(i) = ⊥.

Now, suppose a1 reaches u′ through the i-th port and it is safe, then it returns
back to u in the subsequent round, on condition that the edge (u, u′) remains.
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Otherwise, it stays at u′ until the edge reappears. Now, while it returns back
to u, if LEADER is found, then it accompanies LEADER to u′ in the next
round. Otherwise, it moves towards LEADER following Last.LEADER entries
on whiteboard.

Next, let us consider a2 is at a node v, then the decision taken by a2 based
on the whiteboard contents at v is as follows:

– If ∃ at least one port with f() value is ⊥ and i being the minimum among
them, then choose that port and move to its adjacent port v′ via i from v.

– If there is no such port i with f(i) = ⊥, but ∃ a port j with f(j) = 0 ◦ A,
where A = {a1} then it chooses that port and moves to its adjacent node v′.
Otherwise, if A = {a2} or A = {a1, a2}, then it chooses a different available
port, or backtracks to a node where there exists an available.

– If all ports have the value 1, then it backtracks to a port where each port
value is not 1.

Suppose, a2 travels to v′ using the port i, then first it stores the port i, and after
visiting v′ it moves towards LEADER, based on the stored ports, if it is unable
to find LEADER, then it follows Last.LEADER to meet the LEADER. Now,
whenever it meets the LEADER it provides the sequence of ports Pai

it has
traversed from its initial position to the LEADER. Moreover, if at any moment
it encounters a missing edge and no other agent is waiting for that missing edge,
then it waits until the edge reappears. Now, irrespective of cautious or pendu-
lum walk, whenever an agent a1 (or a2) moves along a port i (say), it updates
f(i) = f(i) ◦ a1 (or f(i) = f(i) ◦ a2) in whiteboard with respect to i.

Description of SingleEdgeBHSLeader(): This algorithm is executed by the
LEADER. It initially instructs a1 to perform cautious and a2 to perform pen-
dulum walk. Whenever an agent, suppose a2 while performing pendulum walk,
explores a new node and meets with LEADER, it increments lengtha2

by 1 and
stores the sequence of port Pai

from ai. On the other hand, if the LEADER
moves from its current position away from a2, it increments La2

by 1 at each such
movement while updating the sequence of ports PLai after each such movement.
Suppose, if the LEADER moves away from ai from its current node u to a node
v along the port i. It does the following things: first, it updates Last.LEADER
at u corresponding to i as 1, while the rest to 0. Second, it increments Lai

by
1 and lastly, updates PLai

= PLai
∪ {i}. Further, whenever LEADER finds a

missing edge along its path, it stops until the edge reappears. The instructions
made by LEADER related to the movement of a1 and a2 are as follows:

– If a2 without loss of generality (w.l.o.g), fails to report while performing
pendulum, while a1 is performing cautious walk, then LEADER instructs
a1 to perform pendulum walk.

– If LEADER is stuck at one end of the missing edge, then it instructs both
a1 and a2 to perform pendulum walk if not already performing the same.

– If LEADER finds a missing edge reappear, while both a1 and a2 performing
pendulum walk, then it instructs either a1 or a2 to perform cautious walk,
based on the fact which among a1 or a2 is faster to report to LEADER.
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a1 Cautious a1 Pendulum

Vacant ME

Remain Stationary

∃j : f(j) = ⊥ no j : f(j) = ⊥ ∀j : f(j) = 1∃j : f(j) = 0 ◦ a2

Move along j Backtrack

f(j) = 0 ◦ a1 f(j) = f(j) ◦ a1

No ME

ME → Missing Edge
Blue Arrow → Transition to State
Black Arrow → State to Transition

or
Transition to Transition

Fig. 4: An illustration of algorithm SingleEdgeBHSAgent() in terms of the
agent a1

Next, we discuss the situations, when LEADER decides that either a1 or a2
has entered the black hole and terminates the algorithm.

– If a1 w.l.o.g, while performing cautious walk fails to return, but the edge
between LEADER and a1 remains, then LEADER identifies a1 to be in
black hole.

– If a1 w.l.o.g, while performing cautious walk fails to return, but the edge
between LEADER and a1 is missing, on the other hand a2 which is per-
forming pendulum walk also fails to return, then LEADER identifies a2 to
be in black hole.

– If both a1 and a2 is performing pendulum walk, and LEADER is stuck at
one end of the missing edge. In this situation if both a1 and a2 fail to report,
then LEADER moves towards the agent a1 (or a2) with the help of Pa1

and PLa1 (or Pa2 and PLa2) based on the fact which among them is last to
report to the LEADER, suppose that agent is a1, then we have the following
cases:
• If a1 is found, then the LEADER understands a2 in black hole.
• If a1 cannot be found and there is no missing edge, then LEADER
identifies a1 to be in a black hole.

• If a1 cannot be found, and there is a missing edge, then LEADER waits,
and if then also a2 fails to report then LEADER identifies a2 to be in
a black hole.

Figure 4, represents all possible states that an agent a1 or a2 attain, while
executing SingleEdgeBHSAgent(), whereas Figure 5, represents all possible
states the LEADER attains while executing SingleEdgeBHSLeader(). The
pseudocode of SingleEdgeBHSAgent() is explained in Algorithm 1, whereas
the pseudocode of SingleEdgeBHSLEADER() is explained in Algorithm 2.

Correctness and Complexity: In this section, we prove the correctness of
our algorithm, as well as give the upper bound results in terms of move and
round complexity.
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No ME + Both agent reporting

Instruct Cautious and Pendulum

ME + Both agent reporting

Instruct Pendulum to both agent

An agent fail to report

Cautious Agent Pendulum Agent Other agent fail to report

MENo ME

BH found Remain Stationary ME+ One agent Reporting

Move towards last
reported agentInstruct Pendulum

Agent Found

Move towards agent

Other agent in BH

Fig. 5: An illustration of algorithm SingleEdgeBHSLeader()

Lemma 3. Given a dynamic cactus graph G with at most one dynamic edge at
any round r. Our Algorithms SingleEdgeBHSAgent() and SingleEdgeBH-
SLeader(), ensures that at most 2 agents are stuck due to the missing edge.

Proof. In order to prove this claim, we first discuss the decisions that LEADER
takes following Algorithm 2, whenever it either finds an agent a1 (w.l.o.g) or a
missing edge.

– LEADER finds a1 at u stuck due to a missing edge (u, v): In this case, if
the edge does not reappear, then LEADER instructs a1 to perform pendu-
lum walk, whereas it remains stationary at u until the edge (u, v) reappears.

– LEADER while tracing for a1 finds a missing edge (u, v): If a1 has not al-
ready entered the black hole, then it is at v while the LEADER is at u,
because a1 while reporting back to LEADER gets stuck at u, whereas
LEADER after finding a1 is not reporting back, moves towards a1 and
gets stuck at u.

So, in any case, LEADER does not allow more than one agent to occupy one
end of the missing edge. Next, we discuss the decisions taken by the agent a1
(w.l.o.g) following the Algorithm 1, whenever it either finds another agent or
encounters a missing edge.

– If a1 finds u to be vacant and (u, v) is a missing edge: In this case, a1 re-
mains stationary at u, until either the edge reappears or until LEADER
appears at u.

– If the node u of the missing edge (u, v) is occupied by a2: In this case, if a1
does not find any available ports at u then it backtracks, otherwise, it moves
along the available port at u.
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Algorithm 1: SingleEdgeBHSAgent(ai)

1 Set Pai = ∅.
2 while ai performs cautious walk do
3 if each port at u has f(j) ̸= ⊥ then
4 Backtrack with LEADER to a node w, where ∃ j, such that

f(j) = ⊥, j ∈ {0, 1, · · · , deg(w)− 1}.
5 else
6 Choose the minimum j at u with f(j) = ⊥, and update

Pai = Pai ∪ {j} and f(j) = 0 ◦ a1.
7 Travel to the adjacent node v via j.
8 if v is safe and e = (u, v) remains then
9 Return back to u and take LEADER to v.

10 else if v is safe and e = (u, v) is missing then
11 Remain at v until e reappears.

12 while ai performs pendulum walk do
13 if each port at u has f(j) = 1 then
14 Backtrack to a node w where ∃ j such that

f(j) ̸= 1, j ∈ {0, 1, · · · , deg(w)− 1}.
15 if a missing edge is encountered while backtracking then
16 Remain stationary until the edge reappears.

17 else
18 Choose the minimum port j such that f(j) ̸= 1 or 0 ◦A, where ai ∈ A.
19 Store Pai = Pai ∪ {j} and move to adjacent node v via j.
20 Update f(j) = f(j) ◦ ai and return to LEADER following Pai and

Last.LEADER.
21 if a vacant missing edge is encountered then
22 Remain stationary until the edge reappears.

23 else
24 Choose a different available port or backtrack.

25 Return back to v using Pai .

So, irrespective of the situation from the above steps, we conclude that at most
2 agents can occupy a node on each side of the missing edge. All the above
scenarios will hold as well if instead of a1, the agent is a2. This proves our
statement. ⊓⊔

Lemma 4. The LEADER following the algorithm SingleEdgeBHSLeader(),
ensures that among the two agents stuck due to a dynamic edge, eventually, one
must be the LEADER.

Proof. We prove the above claim by contradiction. We claim that, whenever
two agents a1 and a2 are at either side of a missing edge, they invariably need
to hold these positions until the missing edge reappears. Consider the scenario,
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Algorithm 2: SingleEdgeBHSLeader(a1, lengtha2
, La2

, Pa2
, PLa2

)

1 Instruct a1 to perform cautious and a2 to perform pendulum walk.
2 Set lengtha1

= La1 = 0 and PLa1 = ∅.
3 while the black hole is not found do
4 if a1 does not return after a round then
5 if no missing edge then
6 Conclude a1 has entered the black hole and terminate.

7 else
8 Remain stationary until the edge reappears.
9 if a2 fail to return within 2(La2 + lengtha2

+ 1) round then
10 if the edge is still missing then
11 Conclude a2 has entered the black hole and terminate.

12 else
13 Instruct a1 to perform pendulum walk and move towards a2

following Pa2 and PLa2 while each time incrementing La1

by 1 and updating PLa1 by storing each port traversed.
14 Set Last.LEADER = 1 for each port traversed and

Last.LEADER = 0 for rest of the ports at each node.
15 Pendulum(a2, lengtha1

, lengtha2
, La1 , La2 , Pa1 , Pa2 , PLa1 , PLa2).

16 else
17 Update lengtha2

= lengtha2
+ 1 and store Pa2 from a2.

18 else
19 Update La2 = La2 + 1 and PLa2 = PLa2 ∪ {j}, where j is the port

taken by LEADER.
20 if a2 fail to return within 2(La2 + lengtha2

+ 1) round then
21 Instruct a1 to perform pendulum walk and move towards a2

following Pa2 and PLa2 while each time incrementing La1 by 1
and updating PLa1 by storing each port traversed.

22 Set Last.LEADER = 1 for each port traversed and
Last.LEADER = 0 for rest of the ports at each node.

23 Pendulum(a2, lengtha1
, lengtha2

, La1 , La2 , Pa1 , Pa2 , PLa1 , PLa2).

24 else
25 Update lengtha2

= lengtha2
+ 1 and store Pa2 from a2.

where an edge (u, v) ∈ G is missing for a finite but sufficiently large number of
rounds, and a1 and a2 are stuck at u and v, respectively. In the first case, we
consider the scenario where both the agents are performing pendulum. Now, this
scenario has arised because LEADER is occupying one end of an earlier missing
edge, i.e., either at u′ or v′ (refer to Algorithm 3). Since, at a round at most
one edge can be missing, hence this earlier missing edge has reappeared, making
way for the new missing edge (u, v), which has stuck both a1 and a2 at u and v,
respectively. Now, as both of them fail to report, the LEADER moves towards
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Algorithm 3:Pendulum(a2, lengtha1
, lengtha2

, La1
, La2

, Pa1
, Pa2

, PLa1
, PLa2

)

1 while black hole is not found do
2 if a2 is found then
3 Set lengtha2

= La2 = 0 and PLa2 = ∅.
4 if a forward edge is missing then
5 Remain stationary and instruct a2 to perform pendulum walk.
6 if a1 does not return after 2(La1 + lengtha1

+ 1) round then
7 Wait for 2(La2 + lengtha2

+ 1) round.

8 if a2 does not return to LEADER then
9 Traverse towards a2 following Pa2 and PLa2 , while

updating Last.LEADER and incrementing La1 and
updating PLa1 for each port traversed.

10 if a2 is found then
11 Conclude the a1 has entered black hole and terminate.

12 else
13 If a forward edge is missing, then wait for

2(lengtha1
+ 1 + La1) rounds.

14 If the edge is still missing and a1 does not return,
conclude a1 is in black hole and terminate.

15 Otherwise, conclude a2 has entered black hole and
terminate.

16 else
17 Increment lengtha2

= lengtha2
+1 and update Pa2 from a2.

18 Pendulum(a2, lengtha1
, lengtha2

, La1 , La2 , Pa1 , Pa2 , PLa1 , PLa2).

19 else
20 Increment lengtha1

= lengtha1
+ 1 and update Pa1 from a1.

21 else
22 SingleEdgeBHSLeader(a2, lengtha1

, La1 , Pa1 , PLa1).

23 else if it encounters a missing edge then
24 Missing(a2, lengtha1

, lengtha2
, La1 , La2 , PLa1 , Pa1 , PLa2 , Pa2).

25 else
26 Wait for one round, and conclude a2 has entered black hole and

terminate.

the agent which has last reported (say a1 without loss of generality) and finds
a1. Whenever it finds a1, it instructs a1 to continue performing pendulum walk
while it remains stationary at u. This leads to a contradiction. In the second
case, suppose a1 at u finds a missing edge (u, v), while it is performing cautious
walk with LEADER, whereas a2 at v also finds a missing edge (u, v) while it
is performing pendulum walk. In this scenario, a1 and LEADER are stuck at
u whereas a2 is stuck at v. In this case, LEADER following the Algorithm 2
instructs a1 to perform pendulum walk, whereas it remains stationary at u. In
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Algorithm 4:Missing(a2, lengtha1
, lengtha2

, La1
, La2

, PLa1
, Pa1

, PLa2
, Pa2

)

1 while a2 is not found do
2 Remain stationary at one end of the missing edge.
3 if a1 fails to report within 2(La1 + lengtha1

+ 1) rounds then
4 Move towards a1 following Pa1 and PLa1 while updating La2 , PLa2

and Last.LEADER.
5 if a1 is not found then
6 if there is no missing edge then
7 Conclude a1 has entered black hole and terminate.

8 else
9 Remain stationary.

10 if a2 does not report after 2(La2 + lengtha2
+ 1) rounds then

11 Conclude a2 has entered black hole and terminate.

12 else
13 Conclude a1 has entered black hole and terminate.

14 else
15 Increment lengtha1 = lengtha1 + 1 and update Pa1 from a1.

16 if the forward edge is missing then
17 Pendulum(a2, lengtha1

, lengtha2
, La1 , La2 , Pa1 , Pa2 , PLa1 , PLa2).

18 else
19 SingleEdgeBHSLeader(a2, lengtha1

, La1 , Pa1 , PLa1).

this case, also, our claim leads to a contradiction. So we conclude that eventually
among the two agents stuck due to a missing edge, one must be the LEADER.

⊓⊔

Lemma 5. An agent a1 or a2 following the SingleEdgeBHSAgent(), does
not enter an infinite cycle.

Proof. Suppose C1 be a cycle in G, where u be the node along which an agent
a1 (w.l.o.g) enters the cycle and moves to the adjacent node v using the port j.
While it moves to v via j, it updates f(j) = f(j) ◦ a1. Now, after exploring C1,
whenever the agent returns back to u and again tries to take the port j, it finds
that a1 has already visited the port j based on the whiteboard information, so
irrespective of the agent performing cautious or pendulum walk, it does not take
the port j again (refer to steps 3-4 and 18 of Algorithm 1). This phenomenon
of an agent, concludes that it never enters an infinite cycle while performing
SingleEdgeBHSAgent(). ⊓⊔

Lemma 6. Algorithm SingleEdgBHSAgent(), ensure that in the worst case,
every node in G is explored by either a1 or a2 until the black hole node is detected.

Proof. Observe, each agent is a t-state finite automata, where t ≥ αn log∆,
the agents a1 and a2 performs t−Increasing-DFS while explore or trace. In
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addition, the whiteboard information helps a1 and a2 find the set of ports it
hasn’t visited yet at each node. Now, as stated in theorem 6 and corollary 7
in [14], an agent with O(n log∆)-bits of memory can explore any static graph
with maximum degree ∆ and diameter at most n. Moreover, lemma 5 ensures
that a1 or a2 never enters an infinite cycle. Further, lemma 4 ensures that either
LEADER and one among a1 or a2 gets stuck by a missing edge, whereas the
other agent can explore unobstructively until it either enters the black hole or
detects it, as the underlying graph can have at most one dynamic edge. So,
combining all these phenomenon, we can guarantee that a1 or a2, can explore
the underlying graph until the black hole is detected. ⊓⊔

Observation 8 Algorithm SingleEdgeBHSLeader, ensures that LEADER
does not enter the black hole.

Lemma 7. In the worst case, a1 and a2 executing algorithm SingleEdgBH-
SAgent(), enters black hole in O(n2) rounds.

Proof. Recall, LEADER either instructs both a1 and a2 to perform pendulum
walk, or it instructs one among them to perform cautious walk while the other
pendulum walk.

– a1 is instructed cautious walk, whereas a2 pendulum walk. Since, at most one
edge is missing, then if a2 is not blocked at all by any missing edge, then in
at most 2n rounds, it explores a new node.

– Both a1 and a2 are instructed pendulum walk. This scenario arises when the
LEADER is stationary at one end of the missing edge. Now, in the worst
case the missing edge for which LEADER is stationary reappears, whereas
both a1 and a2 while exploring a cycle along disjoint paths, gets blocked by
a new missing edge (refer to Fig. 1, where suppose a1 is at v7 and a2 at v8).
In this case, LEADER finding no missing edge adjacent to itself, reaches
either of them in at most n rounds. Now, if a1 is reached, then LEADER
instructs a1 to continue pendulum walk, while LEADER remains stationary.
In this scenario as well, a1 explores a new node each in at most 2n rounds.

Hence, in any case, in at most 2n rounds, an agent explores at least one new node.
This implies in O(n) rounds, at least a new node is explored. This concludes the
statement that either a1 or a2 enters the black hole in O(n2) rounds. ⊓⊔

Lemma 8. Let us consider, the agents a1 or a2 enter the black hole at round r
while executing SingleEdgeBHSAgent(), then the LEADER following Sin-
gleEdgeBHSLeader() detects the black hole node in r +O(n2) rounds.

Proof. Suppose after r rounds either a1 or a2 enters the black hole. Now in each
of the following scenarios, we show that the LEADER takes additional O(n2)
rounds after round r to detect the black hole:

– Scenario-1: Suppose w.l.o.g, a1 while performing cautious walk with the
LEADER enters the black hole at round r. Hence, a1 does not return back
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to LEADER, whereas the edge e between the LEADER and black hole
is present. So, after waiting for one more round, LEADER terminates the
algorithm by concluding the black hole position. On the contrary, suppose
the edge e remains missing from the round r onwards. Since, there is at most
one missing edge at any round, and moreover the other end of the missing
edge contains the black hole. So, a2 can unobstructively explore a new node
in at most 2n rounds while executing pendulum walk, until it reaches the
black hole. Hence, in O(n2) rounds, the agent a2 enters black hole. Therefore,
a2 will also fail to report, and LEADER will conclude the black hole position
in O(n) additional rounds from the round when a2 enters the black hole. In
conclusion, the LEADER takes O(n2) rounds to conclude the black hole
position, after a1 has entered the black hole.

– Scenario-2: Consider w.l.o.g, a2 while performing pendulum walk reaches the
black hole at round r, while a1 is performing cautious walk with LEADER.
So after a2 fails to report, LEADER performs the following task.

• If a1 is with LEADER when a2 fails to report whereas the forward
edge is missing, then LEADER instructs a1 to perform pendulum walk
whenever this edge reappears. Subsequently, LEADER moves towards
a2.

• If a1 is with LEADER when a2 fails to report and there is no missing
edge in the forward direction, then LEADER instructs a1 to perform
pendulum walk, whereas LEADER moves towards a2.

So, in at most n rounds, LEADER reaches the last marked node of a2
following Pa2 and PLa2 . Now, if a2 is not found and there is no forward
missing edge, then LEADER concludes that a2 has reached the black hole.
This conclusion is executed in additional O(n) rounds after a2 has entered
the black hole, i.e., after round r.

Now on the contrary, if a2 is not found by LEADER, and there exists
a missing edge (u, v) along the path towards a2 in the forward direction,
then LEADER remains stationary at u (say), but a1 invariably performs
pendulum walk until it either reaches the black hole or gets stuck at v. The
LEADER in O(n2) rounds, understands the failure of a1’s return as well,
leaves u and moves towards a1. The possibilities are: either a1 is found, or
the LEADER encounters another missing edge, or a2 is not found. In each
case, LEADER concludes the black hole position in O(n2) rounds after a2
has entered the black hole.

– Scenario-3 : Both a1 and a2 are performing pendulum walk, in which a1 (say)
enters the black hole. Now, again a2 unobstructively explores the graph in
O(n2) rounds while the LEADER is stationary at one end of the missing
edge, until a2 either enters black hole or gets stuck by a missing edge. Now,
the LEADER invariably travels towards a2, while it faces the following
instances: either a2 is found, or a2 is not found, or encounters a missing
edge. In any case, the LEADER concludes the black hole position in O(n2)
rounds after a1 has entered the black hole.

⊓⊔
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Lemma 9. The LEADER following the algorithm SingleEdgeBHSLeader()
correctly locates the black hole position.

Proof. We discuss all possible scenarios that can occur while executing algorithm
SingleEdgeBHSLeader().

a1 enters black hole at u during cautious walk: In this case, according to
Algorithm 2, if the edge e = (u, v) between LEADER and a1 is missing, then
LEADER waits at v until e reappears. Meanwhile, a2 is performing pendu-
lum walk, and since there is at most one dynamic edge at any round, hence
a2 will eventually reach u, i.e., enter the black hole from an alternate path.
Now in this case, the LEADER after waiting 2(lengtha2

+1+La2
) rounds,

concludes that a2 has entered black hole. The conclusion is indeed correct,
as one end of the edge which is missing edge, is occupied by LEADER and
the other end contains black hole. Since, there is at most one missing edge
in G at any round. So, a2 faces no obstruction while exploring the graph,
until it enters the black hole. Hence, within 2(lengtha2

+1+La2) rounds a2
otherwise will have reported back to LEADER.

a1 enters black hole during pendulum walk: a1 which is initially perform-
ing cautious, performs pendulum walk for two reason.
– a2 fails to report. This situation arises when a1 is initially performing

cautious walk with LEADER, and a2 which is performing pendulum
walk fails to report. In this scenario, the LEADER according to Algo-
rithm 2, instructs a1 to perform pendulum walk, while it moves towards
a2 following Pa2 and PLa2 . Now we have two possibilities: first, a2 is
found and second a2 is not found. If a2 is found, then it is instructed to
either perform cautious or pendulum walk, based on the fact that there
is a forward missing edge or not. Now, in this situation, since a1 has
entered black hole and fails to report, then LEADER moves towards a1
while instructing a2 to perform pendulum walk. If the LEADER does
not find a missing edge corresponding to the last visited port of a1, then
it concludes that a1 has entered black hole. Otherwise, if LEADER gets
stuck at a node v due to a missing edge e = (u, v), then it remains sta-
tionary, and while a2 will either get stuck at u or eventually enter black
hole. So, ultimately a2 also fails to report and LEADER not knowing
the reason behind a2’s failure to report, moves towards a2 leaving the
node v. If a2 is found, i.e., it got stuck at u then it correctly concludes
a1 has entered the black hole, whereas if LEADER encounters another
missing edge while moving towards a2, then after waiting an additional
2(La1

+ lengtha2
+ 1) round, it correctly concludes a1 has entered black

hole, as otherwise a1 will have reported back to LEADER. Otherwise,
if a2 is not found, and there is no missing edge, then also LEADER
correctly concludes a2 has entered black hole, as otherwise a2 will have
reported back to LEADER.

– a1 performs pendulum walk with a2: This situation arised because, a2
initially stopped reporting due to a missing edge, while a1 is performing
cautious walk. Now, as LEADER moves towards a2 it instructs a1 to
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change its movement to pendulum walk. Moreover, it finds a2 and the
missing edge persists, in this situation, a2 is further instructed to con-
tinue pendulum walk whereas LEADER remains stationary at one end
of the missing edge. If both a1 and a2 fail to return, then LEADER
identifies at least one among them has entered black hole. It is because,
the LEADER holds one end of the missing edge, and at most one agent
may be stuck at the other end, whereas the remaining agent must return
if it has not entered the black hole. So, LEADER moves towards the last
reported agent a1 (say w.l.o.g). If a1 is not found and there is no missing
edge in the forward direction, then LEADER correctly identifies the
black hole position. Otherwise, if LEADER finds a missing edge along
its path towards a1 and further waits for 2(lengtha2

+ 1 + La2
) rounds,

within which if a2 also fails to return, then LEADER concludes a2 has
entered black hole. Since, LEADER has moved towards a1 and encoun-
tered a new missing edge, this implies that the earlier missing edge has
reappeared. Hence, a2 has no other obstruction along its path towards
LEADER, if it is originally stuck due to the earlier missing edge.

The explanation are similar, when a2 enters black hole while performing either
cautious or pendulum walk. So, we have shown that in each case the LEADER
correctly determines the black hole location. ⊓⊔

Theorem 9. The agent following algorithms SingleEdgeBHSAgent() and
SingleEdgeBHSLeader(), correctly locates the black hole in a dynamic cactus
graph G with at most one dynamic edge at any round with O(n2) moves and in
O(n2) rounds.

Proof. Lemmas 7 and 8 states that our Algorithms 1 and 2, correctly find the
black hole in O(n2) rounds, and since at each round each agent can move at
most once. Hence, there can be at most 3 moves in each round of our algorithm.
This implies, that the agent following Algorithms 1 and 2, solves the black hole
search problem in O(n2) moves. ⊓⊔

4.2 Black Hole Search in Presence of Multiple Dynamic Edges

In this section, we present an algorithm MultiEdgeBHS() for the agents to
locate the black hole position, where the underlying graph is a dynamic cactus
graph G but unlike the earlier section, where at most one edge can be missing at
any round, in this section, we discuss the case in which there can be at most k
dynamic edges, such that the underlying graph remains connected. As discussed
earlier, each node v ∈ G is equipped with a whiteboard of O(deg(u)(log deg(u)+
k log k)) bits of memory. Moreover, there are a team of 2k + 3 agents, A =
{a1, · · · , a2k+3} which executes the algorithm MultiEdgeBHS(), starting from
a safe node also termed as home. Next, we define the contents of information
that can be present on a whiteboard.
Whiteboard: For each node v ∈ G, a whiteboard is maintained with a list of
information for each port of v. For each port j, where j ∈ {0, · · · , deg(v) − 1},
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an ordered tuple (g1(j), g2(j)) is stored on the whiteboard. The function g1 is
defined to be exactly the same as the function f in section 4.1.

On the other hand, the function g2 is defined as follows, g2 : {0, . . . , deg(v)−
1} → {⊥, 0, 1},

g2(j) =


⊥, if an agent is yet to visit the port j

0, if no agent has returned to the node v along j

1, otherwise

Each agent performs a t-Increasing-DFS [14], where the movement of each
agent can be divided into two types explore and trace:

– In explore, an agent performs either cautious walk or pebble walk depending
on the situation.

– In trace, an agent walks along the safe ports of a node v, i.e., all such port
j ∈ v with g2(j) = 1.

Our algorithm MultiEdgeBHS() requires no LEADER, unlike our previous
algorithms in section 4.1. In this case each ai (where i ∈ {a1, a2, · · · , a2k+3})
executes their operations, based on the whiteboard information they gather at
each node.

Next, we give a detailed description of the algorithm MultiEdgeBHS().
Outline of Algorithm: The team of agents A = {a1, . . . , a2k+3} are initially
located at a safe node, termed as home. Initially, the whiteboard entry corre-
sponding to each port at each node in G is (⊥,⊥). The lowest Id agent present
at home, i.e., a1 in this case decides to perform cautious walk. At the first round,
it chooses the 0-th port and if the edge corresponding to 0-th port exists, then it
moves along it to an adjacent node v while updating (g1(0), g2(0)) at home from
(⊥,⊥) to (0◦a1, 0). Now, if v is safe, and the edge (home, v) exists then it returns
to home at the second round, while updating g2(0) at home to 1, i.e., marking
the edge (home, v) as safe. Further, if at the third round the edge (home, v)
exists, then a1 accompanies A\{a1} to v while updating g1(0) = g1(0) ◦ A′,
where A′ = {a2, · · · , a2k+3}. Otherwise, if the edge has gone missing, at the
second round, then a1 and a2 remain at v and home, respectively until the edge
reappears, whereas the remaining agent continues to perform their respective
movement.

Now, consider a scenario where the edge (home, v) goes missing at the third
round when all the A agents are at home. In this case, a1 remains at home until
the edge reappears, whereas the remaining agents continue to perform cautious
walk along the other available ports. Whenever the edge reappears suppose at
the r-th round, then it starts pebble walk. The movement of a1 performing pebble
walk is as follows: at the r + 1-th round a1 moves to v, further the agent moves
as follows:

– If there exists a port i with g2(i) = 0, and the edge remains, then at the r+2-
th round a1 stays at v. If no agent returns along i-th port, a1 concludes that
the node w.r.to the port i is the black hole node. Otherwise, if an agent aj
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returns (for some j > 0), then both a1 and aj start cautious walk. Moreover,
if the edge does not exist, and there is no other agent at v, then a1 waits
until the edge reappears. Otherwise, if there is already an agent waiting, then
a1 decides to move from v to some adjacent node, based on the whiteboard
entry.

– If there exists a port i with g2(i) = ⊥, then at r + 2 round a1 chooses
that port and moves to the adjacent node while updating (g1(i), g2(i)) to
(0 ◦ a1, 0).

– If each port at v is having its g2() value 1, then at r+2-th round a1 backtracks
to home, if (home, v) exists, otherwise stays at v until the edge reappears.

In general, whenever multiple agents meet at a node, they start cautious
movement. Moreover, when a single agent waiting for a missing edge reappears,
then it starts pebble walk. In addition, whenever an agent finds a port i at some
node in G with g2(i) = 0 and the edge exists, then after waiting for a round, it
concludes the adjacent node w.r.to i is the black hole node.

The pseudo code of MultiEdgeBHS() is explained in Algorithm 2.

Algorithm 5: MultiEdgeBHS(u, ai)

1 if more than one agent is available at u then
2 MultipleAgent(u, ai).

3 else
4 Perform SingleAgent(u, ai).

Correctness and Complexity: In this section we analyze the correctness and
complexity of our algorithm 5.

Lemma 10. Given a dynamic cactus graph G with at most k dynamic edges at
any round r. Our algorithm, MultiEdgeBHS() ensures that at most 2 agents
are stuck due to a missing edge at any round.

Proof. An agent executing algorithm 5 may encounter a missing edge in two
possible ways:

– First, when the agent is performing cautious walk.
– Second, when the agent is performing pebble walk.

In either case, the agent remains stationary when it encounters a vacant miss-
ing edge (refer to Algorithms 6 and 7). Moreover, if any agent at a node u
finds another agent waiting due to a missing edge w.r.to a port j (where j ∈
{0, 1, · · · , deg(u)−1}), then it either chooses a different available port or if there
are no such available ports then the agent backtracks. Hence, either end of a
missing edge can be occupied by at most 2 agents. ⊓⊔
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Algorithm 6: MultipleAgent(u, ai)

1 if ai is the minimum Id agent at u then
2 if a port j with (⊥,⊥) exists then
3 Traverse to v via j and update g1(j) = 0 ◦ ai and g2(j) = 0 at u.
4 if v is safe and (u, v) exits then
5 Return to u, and update g2(j) = 1 at u.
6 if (u, v) exists then
7 Move all available agents to v via and update g1(j) = 0 ◦A′,

where A′ is the set of available agents at u.
8 Perform MultiEdgeBHS(v, ai).

9 else
10 Stay at u until (u, v) reappears, if no agent is waiting for (u, v).
11 Perform MultiEdgeBHS(u, am), where am is the next

available minimum Id agent at u after ai.

12 else if v is safe but (u, v) goes missing then
13 Remain at v, until the edge reappears.

14 else if a port j of u with (0 ◦A, 0) exists then
15 if the edge is missing then
16 Stay at u until (u, v) reappears, if no agent is waiting for (u, v).
17 Perform MultiEdgeBHS(u, am), where am is the next available

minimum Id agent at u after ai.

18 else
19 Conclude the adjacent node to be the black hole and terminate.

20 else if a port j of u with (0 ◦A, 1) exists then
21 if the edge is missing then
22 Stay at u until (u, v) reappears, if no agent is waiting for (u, v).
23 Perform MultiEdgeBHS(u, am), where am is the next available

minimum Id agent at u after ai.

24 else
25 if A contains Id of at least one available agent at u then
26 Choose a different available port or backtrack.

27 else
28 Move all available agents to v via j-th port and update

g1(j) = g1(j) ◦A′, where A′ are the set of all available agents
then perform MultiEdgeBHS(v, ai).

29 else
30 Backtrack with all available agents to a node w with a port j,

g1(j) ̸= 1 perform MultiEdgeBHS(w, ai).

31 else
32 Follow instruction of the minimum Id agent.
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Algorithm 7: SingleAgent(u, ai)

1 if a port j at u with (⊥,⊥) exists then
2 If that edge exists, then visit that node v while updating g1(j) = 0 ◦ ai and

g2(j) = 0.
3 Else, if that edge is missing, stay at u until (u, v) reappears, if no agent is

waiting for (u, v).
4 if v is safe then
5 If the edge (u, v) exists, then return to u and update g2(j) = 1.
6 Else, if the edge (u, v) is missing, then wait until it reappears.
7 if (u, v) exists then
8 Visit v and perform MultiEdgeBHS(v, ai).

9 else
10 Stay at u until (u, v) reappears, if no agent is waiting for (u, v).

Else, choose a different port and continue MultiEdgeBHS(u, ai).

11 else if a port j at u with (0 ◦A, 0) exists then
12 if A does not contain ai then
13 If the edge exists, and no agent returns after one round, then

terminate by concluding the node w.r.to the port j is the black hole.
14 Else, if the edge is missing, then stay at u until (u, v) reappears, if no

agent is waiting for (u, v). Else, choose a different port and perform
MultiEdgeBHS(u, ai).

15 else
16 Choose a different port and perform MultiEdgeBHS(u, ai).

17 else if a port j at u with (0 ◦A, 1) exists then
18 if A does not contain ai then
19 Move along j to v while updating g2(j) = g2(j) ◦ ai at u and perform

MultiEdgeBHS(v, ai).

20 else
21 Choose a different port and perform MultiEdgeBHS(u, ai).

22 else
23 Backtrack to a node w with a port j, g1(j) ̸= 1 and perform

MultiEdge(w, ai).

Lemma 11. In the worst case at most 2 agents are consumed by the black hole,
while the agents are following the algorithm MultiEdgeBHS().

Proof. By lemma 2, it has been shown that if v is the black hole node and the
node u is the home, then any path from home to v must either pass along v0
or v1, where v0 and v1 belong to the same cycle as v in G. This implies that an
agent passing through these unexplored edges (v0, v) and (v1, v) cannot mark
the nodes v0 and v1 to be safe, as they enter the black hole. So, any subsequent
agent visiting either v0 or v1 finds that g2() value corresponding to the edges
(v0, v) and (v1, v) are 0. As any cycle can have at most one missing edge at
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any round such that the underlying graph remains connected, the adversary
can either disappear (v0, v) or (v1, v) at any round. So, any set of agents trying
to visit these unsafe nodes while executing MultiEdgeBHS(), can find these
nodes v0 and v1 unsafe, and can successfully locate the black hole node without
any further agents entering the black hole. Hence, this guarantees that at most
two agents can be consumed by the black hole. ⊓⊔

Lemma 12. Our algorithm MultiEdgeBHS() ensures that no agent enters
an infinite cycle.

Proof. Consider C to be a cycle in G and u is the node in C along which an
agent ai while executing Algorithm 5 traverses to an adjacent node v ∈ C via
the port i. Now, ai may be traversing with other agents performing cautious
walk (in that case g1(i) = g1(i)◦A′ refer to step 28 of Algorithm 6) or traversing
alone performing pebble walk (in this case g1(i) = g1(i) ◦ ai refer to step 19 of
Algorithm 7). In either case, ai after exploring C whenever reaches u and again
decides to travel along i, then with the help of g1(i) at the whiteboard, identifies
that it has already traversed this port before. In this situation, it decides not to
take this port, and either chooses another available port or backtrack (refer to
step 25-26 of Algorithm 6 when ai is performing cautious walk, otherwise step
12-16 of Algorithm 7). ⊓⊔

Lemma 13. MultiEdgeBHS() ensures that any agent which is not stuck due
to a missing edge can explore the remaining graph until it either enters the black
hole or detects it.

Proof. As stated, each agent is a t-state finite automata, where t ≥ αn log∆.
An agent while executing either during cautious or pebble walk, performs the
t−Increasing-DFS algorithm, which in turn ensures that any static graph of
diameter at most n and maximum degree ∆ can be explored with O(n log∆) bits
of memory (refer to Theorem 6 and to Corollary 7 in [14]). Now, in this situation
of dynamic graph, the whiteboard in addition helps the agent in determining
the ports it has yet to visit from a node (g1(i) = ⊥ or 0 ◦ A, where A does not
contain ai, refers that i-th port not visited by ai). Moreover, the whiteboard also
restricts the agent from entering in an infinite cycle loop (refer to Lemma 12).
So, an agent which is not stuck due to a missing edge, can explore each node
of the underlying graph until it either enters the black hole or detects the black
hole. ⊓⊔

Theorem 10. Given a dynamic cactus graph G with at most k dynamic edges
at any round. Our algorithm MultiEdgeBHS() ensures that it requires at most
2k + 3 agents, to successfully locates the black hole position.

Proof. By lemma 10, we have shown that at most 2 agents are stuck due to a
dynamic edge. Now at any round, there can be at most k dynamic edges, which
in turn implies that at most 2k agents can be stuck due to these dynamic edges.
Moreover by lemma 11, it is shown that at most 2 agents get eliminated by
the black hole. Moreover, lemma 13, ensures that any agent which is not stuck
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can explore the graph until it either detects the black hole or gets eliminated
by it. Hence, the remaining agent among 2k + 3 agents can traverse along the
graph unobstructively, and whenever it finds a vertex adjacent to a black hole,
along which a port is marked unsafe (i.e. g2() value with respect to a port is 0)
in whiteboard, it waits for one round and if no agent returns then it correctly
concludes that the node w.r.to the unsafe port is the black hole position. ⊓⊔

Theorem 11. The team of agents A = {a1, a2, · · · , a2k+3} following Multi-
EdgeBHS(), locates the black hole in a dynamic cactus graph G with at most k
dynamic edges at any round with O(kn) rounds and in O(k2n) moves.

Proof. Consider a graph with k-cycles, C1, C2, · · · , Ck, each cycle can have at
most one dynamic edge at a round, such that the graph remains connected. Now,
we analyze the complexity with the help of the following cases based on the size
of Ci’s, 1 ≤ i ≤ k.

– Case-1: Suppose |Ci| ≤ n
k , ∀ 1 ≤ i ≤ k, consider a cycle C1 with the nodes

u, v, v′, w, w′ ∈ C1. Let us assume, the set of 2k + 3 agents enter C1 from u
and moves along a clockwise direction and encounters a missing edge (v, v′),
which separates a1 (say) from A. In this scenario, the algorithm Multi-
EdgeBHS() instructs a2 to remain stationary at v, whereas the remaining
agents leave a1 and a2 and start moving in a counter-clockwise direction,
either to trace or to explore. Now, in the meantime suppose the adversary
revives the edge (v, v′), which reunites a1 and a2 and they continue to move
forward, whereas disappears another edge (w,w′) in the counter-clockwise
direction, which separates further two agents a3 and a4 (say) in a similar
manner. Now, in order to separate these 4 agents from A, the adversary re-
quires O(nk ) rounds. Continuing in this manner, in order to separate 2k + 3
agents by reappearing and disappearing edges in C1, it takes O(k n

k ) = O(n)
rounds. Hence, in order to explore each of k such cycles, in the worst case
O(kn) rounds are required. Moreover, in each round at most 2k + 3 agents
move, hence in the worst case O(k2n) moves are required.

– Case-2: Suppose |Ci| = 3, ∀ 2 ≤ i ≤ k, and |C1| = n+ 2− 3k. As discussed
in the earlier case it requires O(k(n+2−3k)) round to separate 2k+3 agent
in C1, whereas since the other cycles are of size 3, it takes an additional O(k)
rounds to perform the same task in the remaining k−1 cycles. So, in general,
it requires O(k(n− 2k)) rounds to explore G in this case. Moreover, at most
2k + 3 agents move in each round, hence in the worst case O(k2(n − 2k))
moves.

So, we analyze the two extreme possibilities, from the above cases, and conclude
that in the worst case the algorithm MultiEdgeBHS() requires O(kn) rounds
and O(k2n) moves to locate the black hole. ⊓⊔

5 Conclusion

In this paper, we studied the black hole search problem in a dynamic cactus
for two types of dynamicity. We propose algorithms and lower bound and upper
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bound complexities in terms of number of agents, rounds and moves in each
case of dynamicity. First, we studied at most one dynamic edge case, where we
showed with 2 agents it is impossible to find the black hole, and designed a black
hole search algorithm for 3 agents. Our algorithm is tight in terms of number of
agents. Second, we studied the case when at most k edges are dynamic. In this
case, also we propose a black hole search algorithm with 2k+3 agents. Further,
we propose that it is impossible to find the black hole with k + 1 agents in this
scenario. A future work is to design an algorithm which has a tight bound in
terms of number of agents when the underlying graph has at most k dynamic
edges. Further, it will be interesting to find an optimal algorithm in terms of
complexity in both cases of dynamicity.
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