Skip to main content

Scalable Deep Metric Learning on Attributed Graphs

  • Conference paper
  • First Online:
Computational Data and Social Networks (CSoNet 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14479))

Included in the following conference series:

  • 70 Accesses

Abstract

We consider the problem of constructing embeddings of large attributed graphs and supporting multiple downstream learning tasks. We develop a graph embedding method, which is based on extending deep metric and unbiased contrastive learning techniques to 1) work with attributed graphs, 2) enabling a mini-batch based approach, and 3) achieving scalability. Based on a multi-class tuplet loss function, we present two algorithms – DMT for semi-supervised learning and DMAT-i for the unsupervised case. Analyzing our methods, we provide a generalization bound for the downstream node classification task and for the first time relate tuplet loss to contrastive learning. Through extensive experiments, we show high scalability of representation construction, and in applying the method for three downstream tasks (node clustering, node classification, and link prediction) better consistency over any single existing method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bo, D., Wang, X., Shi, C., Zhu, M., Lu, E., Cui, P.: Structural deep clustering network. In: WWW (2020)

    Google Scholar 

  2. Chen, B., Li, P., Yan, Z., Wang, B., Zhang, L.: Deep metric learning with graph consistency. In: AAAI, vol. 35, pp. 982–990 (2021)

    Google Scholar 

  3. Chen, M., Wei, Z., Ding, B., Li, Y., Yuan, Y., Du, X., Wen, J.: Scalable graph neural networks via bidirectional propagation. In: NeurIPS (2020)

    Google Scholar 

  4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML (2020)

    Google Scholar 

  5. Chuang, C.Y., Robinson, J., Lin, Y.C., Torralba, A., Jegelka, S.: Debiased contrastive learning. In: NeurIPS (2020)

    Google Scholar 

  6. Cui, G., Zhou, J., Yang, C., Liu, Z.: Adaptive graph encoder for attributed graph embedding. In: KDD (2020)

    Google Scholar 

  7. Cui, Y., et al.: Fine-grained categorization and dataset bootstrapping using deep metric learning with humans in the loop. In: CVPR (2016)

    Google Scholar 

  8. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org

  9. Hartigan, J.A., Wong, M.A.: A k-means clustering algorithm. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)

    Google Scholar 

  10. Khosla, P., et al.: Supervised contrastive learning. In: NeurIPS (2020)

    Google Scholar 

  11. Lazer, D., et al.: Life in the network: the coming age of computational social. Science 323 (2009)

    Google Scholar 

  12. Li, Q., Han, Z., Wu, X.: Deeper insights into graph convolutional networks for semi-supervised learning. In: AAAI (2018)

    Google Scholar 

  13. Meyer, B.J., Harwood, B., Drummond, T.: Deep metric learning and image classification with nearest neighbour gaussian kernels. In: ICIP (2018)

    Google Scholar 

  14. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23) (2006)

    Google Scholar 

  15. Norouzi, M., Fleet, D.J., Salakhutdinov, R.R.: Hamming distance metric learning. In: Advances in Neural Information Processing Systems, vol. 25 (2012)

    Google Scholar 

  16. Oh Song, H., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted structured feature embedding. In: CVPR, pp. 4004–4012 (2016)

    Google Scholar 

  17. Park, J., Lee, M., Chang, H., Lee, K., Choi, J.: Symmetric graph convolutional autoencoder for unsupervised graph representation learning. In: ICCV (2019)

    Google Scholar 

  18. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: KDD (2014)

    Google Scholar 

  19. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: CVPR (2015)

    Google Scholar 

  20. Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. In: Advances in Neural Information Processing Systems (2016)

    Google Scholar 

  21. Thomas, K.N., Max, W.: Variational graph auto-encoders. In: NIPS Workshop on Bayesian Deep Learning (2016)

    Google Scholar 

  22. Thomas, K.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  23. Veličković, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.: Deep graph infomax. In: ICLR (2019)

    Google Scholar 

  24. Wang, F., Liu, H.: Understanding the behaviour of contrastive loss. In: CVPR (2021)

    Google Scholar 

  25. Wang, T., Isola, P.: Understanding contrastive representation learning through alignment and uniformity on the hypersphere. In: ICML (2020)

    Google Scholar 

  26. Xia, J., Wu, L., Wang, G., Chen, J., Li, S.Z.: ProGCL: rethinking hard negative mining in graph contrastive learning. In: ICML (2022)

    Google Scholar 

  27. Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. In: KDD. MDS 2012 (2012)

    Google Scholar 

  28. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph convolutional neural networks for web-scale recommender systems. In: KDD (2018)

    Google Scholar 

  29. Zhang, X., Liu, H., Li, Q., Wu, X.: Attributed graph clustering via adaptive graph convolution. In: IJCAI (2019)

    Google Scholar 

  30. Zhao, W., Rao, Y., Wang, Z., Lu, J., Zhou, J.: Towards interpretable deep metric learning with structural matching. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2021)

    Google Scholar 

  31. Zhu, H., Koniusz, P.: Simple spectral graph convolution. In: ICLR (2021)

    Google Scholar 

  32. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: WWW (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Agrawal, G., Jin, R., Ramnath, R. (2024). Scalable Deep Metric Learning on Attributed Graphs. In: Hà, M.H., Zhu, X., Thai, M.T. (eds) Computational Data and Social Networks. CSoNet 2023. Lecture Notes in Computer Science, vol 14479. Springer, Singapore. https://doi.org/10.1007/978-981-97-0669-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0669-3_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0668-6

  • Online ISBN: 978-981-97-0669-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics