Skip to main content

Fourier-Based Instance Selective Whitening for Domain Generalized Lane Detection

  • Conference paper
  • First Online:
Computer Science and Education. Computer Science and Technology (ICCSE 2023)

Abstract

Lane detection represents a fundamental task within autonomous driving. While deep learning has made remarkable advancements in the source domain, its ability to generalize to unseen target domains still poses a challenge. To address this issue, we present a Fourier-based instance selective whitening framework. This framework utilizes the distinct frequencies within the Fourier spectrum to decompose data style into environment and texture styles. Our method preserves semantic features by stabilizing the phase component, while also extending the style through perturbing and amalgamating the amplitude component. Further, we propose a standardized instance selective whitening strategy to analyze overall distributional changes, emphasizing general features and reducing domain-specific information. Our approach is validated through extensive experiments across multiple challenging datasets, such as Tusimple, CULane, and LLAMAS, which demonstrates significant effectiveness when compared to existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tusimple. Tusimple benchmark (2017)

    Google Scholar 

  2. Araslanov, N., Roth, S.: Self-supervised augmentation consistency for adapting semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15384–15394 (2021)

    Google Scholar 

  3. Balaji, Y., Sankaranarayanan, S., Chellappa, R.: Metareg: towards domain generalization using meta-regularization. Advances in neural information processing systems 31 (2018)

    Google Scholar 

  4. Behrendt, K., Soussan, R.: Unsupervised labeled lane markers using maps. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  5. Cho, W., Choi, S., Park, D.K., Shin, I., Choo, J.: Image-to-image translation via group-wise deep whitening-and-coloring transformation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10639–10647 (2019)

    Google Scholar 

  6. Choi, S., Jung, S., Yun, H., Kim, J.T., Kim, S., Choo, J.: Robustnet: Improving domain generalization in urban-scene segmentation via instance selective whitening. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11580–11590 (2021)

    Google Scholar 

  7. Dou, Q., Coelho de Castro, D., Kamnitsas, K., Glocker, B.: Domain generalization via model-agnostic learning of semantic features. Advances in neural information processing systems 32 (2019)

    Google Scholar 

  8. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096–2030 (2016)

    Google Scholar 

  9. Gatys, L., Ecker, A.S., Bethge, M.: Texture synthesis using convolutional neural networks. Advances in neural information processing systems 28 (2015)

    Google Scholar 

  10. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423 (2016)

    Google Scholar 

  11. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D.: Domain generalization for object recognition with multi-task autoencoders. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2551–2559 (2015)

    Google Scholar 

  12. Gong, R., Li, W., Chen, Y., Gool, L.V.: Dlow: domain flow for adaptation and generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2477–2486 (2019)

    Google Scholar 

  13. Hansen, B.C., Hess, R.F.: Structural sparseness and spatial phase alignment in natural scenes. JOSA A 24(7), 1873–1885 (2007)

    Article  Google Scholar 

  14. Hou, Y., Ma, Z., Liu, C., Loy, C.C.: Learning lightweight lane detection CNNs by self attention distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1013–1021 (2019)

    Google Scholar 

  15. Hoyer, L., Dai, D., Van Gool, L.: Daformer: improving network architectures and training strategies for domain-adaptive semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9924–9935 (2022)

    Google Scholar 

  16. Lee, S., Seong, H., Lee, S., Kim, E.: Wildnet: Learning domain generalized semantic segmentation from the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9936–9946 (2022)

    Google Scholar 

  17. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.: Learning to generalize: Meta-learning for domain generalization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  18. Li, H., Pan, S.J., Wang, S., Kot, A.C.: Domain generalization with adversarial feature learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5400–5409 (2018)

    Google Scholar 

  19. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Universal style transfer via feature transforms. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  20. Motiian, S., Piccirilli, M., Adjeroh, D.A., Doretto, G.: Unified deep supervised domain adaptation and generalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5715–5725 (2017)

    Google Scholar 

  21. Nussbaumer, H.J., Nussbaumer, H.J.: The fast Fourier transform. Springer (1982)

    Google Scholar 

  22. Oppenheim, A., Lim, J., Kopec, G., Pohlig, S.: Phase in speech and pictures. In: ICASSP’79. IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. 632–637. IEEE (1979)

    Google Scholar 

  23. Oppenheim, A.V., Lim, J.S.: The importance of phase in signals. Proc. IEEE 69(5), 529–541 (1981)

    Article  Google Scholar 

  24. Pan, X., Luo, P., Shi, J., Tang, X.: Two at once: enhancing learning and generalization capacities via ibn-net. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 464–479 (2018)

    Google Scholar 

  25. Pan, X., Shi, J., Luo, P., Wang, X., Tang, X.: Spatial as deep: spatial CNN for traffic scene understanding. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  26. Pan, X., Zhan, X., Shi, J., Tang, X., Luo, P.: Switchable whitening for deep representation learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1863–1871 (2019)

    Google Scholar 

  27. Piotrowski, L.N., Campbell, F.W.: A demonstration of the visual importance and flexibility of spatial-frequency amplitude and phase. Perception 11(3), 337–346 (1982)

    Article  Google Scholar 

  28. Rahman, M.M., Fookes, C., Baktashmotlagh, M., Sridharan, S.: Correlation-aware adversarial domain adaptation and generalization. Pattern Recogn. 100, 107124 (2020)

    Article  Google Scholar 

  29. Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: efficient residual factorized convnet for real-time semantic segmentation. IEEE Trans. Intell. Transp. Syst. 19(1), 263–272 (2017)

    Article  Google Scholar 

  30. Roy, S., Siarohin, A., Sangineto, E., Bulo, S.R., Sebe, N., Ricci, E.: Unsupervised domain adaptation using feature-whitening and consensus loss. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9471–9480 (2019)

    Google Scholar 

  31. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  32. Siarohin, A., Sangineto, E., Sebe, N.: Whitening and coloring batch transform for gans. arXiv preprint arXiv:1806.00420 (2018)

  33. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  34. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2517–2526 (2019)

    Google Scholar 

  35. Wang, Z., Ren, W., Qiu, Q.: Lanenet: real-time lane detection networks for autonomous driving. arXiv preprint arXiv:1807.01726 (2018)

  36. Wu, D., et al.: Yolop: you only look once for panoptic driving perception. Mach. Intell. Res. 19(6), 550–562 (2022)

    Article  MathSciNet  Google Scholar 

  37. Xu, Q., Zhang, R., Zhang, Y., Wang, Y., Tian, Q.: A fourier-based framework for domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14383–14392 (2021)

    Google Scholar 

  38. Yang, Y., Soatto, S.: Fda: fourier domain adaptation for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4085–4095 (2020)

    Google Scholar 

  39. Yue, X., Zhang, Y., Zhao, S., Sangiovanni-Vincentelli, A., Keutzer, K., Gong, B.: Domain randomization and pyramid consistency: simulation-to-real generalization without accessing target domain data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2100–2110 (2019)

    Google Scholar 

  40. Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y., Wen, F.: Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12414–12424 (2021)

    Google Scholar 

  41. Zheng, T., et al.: Clrnet: cross layer refinement network for lane detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 898–907 (2022)

    Google Scholar 

  42. Zhou, K., Yang, Y., Hospedales, T., Xiang, T.: Learning to generate novel domains for domain generalization. In: Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVI 16, pp. 561–578. Springer (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikui Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, W., Wei, S., Xu, S., Tan, C., Zhang, S., Zhao, Y. (2024). Fourier-Based Instance Selective Whitening for Domain Generalized Lane Detection. In: Hong, W., Kanaparan, G. (eds) Computer Science and Education. Computer Science and Technology. ICCSE 2023. Communications in Computer and Information Science, vol 2023. Springer, Singapore. https://doi.org/10.1007/978-981-97-0730-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0730-0_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0729-4

  • Online ISBN: 978-981-97-0730-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics