Skip to main content

A Cross-Chain System Supports Verifiable Complete Data Provenance Queries

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14489))

  • 556 Accesses

Abstract

In recent years, blockchain has been widely used as a decentralized database. However, its limited scalability makes it unsuitable for large-scale applications. To overcome this challenge, high scalability cross-chain technologies have become crucial for implementing blockchain applications. While existing cross-chain technologies focus on implementing cross-chain logic, ignoring the issue of incomplete results that may arise when querying data provenance in cross-chain systems. In this work, we propose a cross-chain system that supports efficient and verifiable complete data provenance queries. We achieve this by designing an index based on a linear list and adjacent linked list to store related transactions, enabling us to perform a complete query. We also utilize vector commitments to generate verification objects indicating whether transactions are included in our index entries, ensuring verifiable integrity of query results. Furthermore, we construct an index structure based on B+ tree and Merkle tree to enhance the system’s availability and query efficiency. Our experimental results demonstrate that our scheme not only has excellent performance in terms of the cost of verification object, but it also improves query efficiency by approximately two times.

J. Tian and E. Zhou—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bitcoin, N.S.: A peer-to-peer electronic cash system. Decentral. Bus. Rev. 21260 (2008)

    Google Scholar 

  2. Buterin, V.: A next-generation smart contract and decentralized application platform. White Paper 3(37), 2–1

    Google Scholar 

  3. Androulaki, E., Barger, A., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, pp. 1–15 (2018)

    Google Scholar 

  4. Biswas, D., Jalali, H., Ansaripoor, A.H., et al.: Traceability vs. sustainability in supply chains: the implications of blockchain. Eur. J. Oper. Res. 305(1), 128–147 (2023)

    Article  MathSciNet  Google Scholar 

  5. Patel, R., Migliavacca, M., Oriani, M.: Blockchain in Banking and Finance: is the best yet to come? A bibliometric review. Res. Int. Bus. Fin. 101718 (2022)

    Google Scholar 

  6. Taherdoost, H.: Blockchain-based internet of medical things. Appl. Sci. 13(3), 1287 (2023)

    Article  Google Scholar 

  7. Belchior, R., et al.: A survey on blockchain interoperability: past, present, and future trends. ACM Comput. Surv. (CSUR) 54(8), 1–41 (2021)

    Article  Google Scholar 

  8. Peng, Z., Wu, H., Xiao, B., et al.: VQL: providing query efficiency and data authenticity in blockchain systems. In: 2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW), pp. 1–6. IEEE (2019)

    Google Scholar 

  9. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 2014(151), 1–32 (2014)

    Google Scholar 

  10. Zhu, Y., Zhang, Z., Jin, C., et al.: Towards rich Query blockchain database. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 3497–3500 (2020)

    Google Scholar 

  11. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_5

    Chapter  Google Scholar 

  12. Graefe, G.: Modern B-tree techniques. Found. Trends® Databases 3(4), 203–402 (2011)

    Article  Google Scholar 

  13. De Ocáriz Borde, H.S.: An Overview of Trees in Blockchain Technology: Merkle Trees and Merkle Patricia Tries (2022)

    Google Scholar 

  14. Muzammal, M., Qu, Q., Nasrulin, B., et al.: A blockchain database application platform. arXiv preprint arXiv:1808.05199 (2018)

  15. Armknecht, F., Karame, G.O., Mandal, A., Youssef, F., Zenner, E.: Ripple: overview and outlook. In: Conti, M., Schunter, M., Askoxylakis, I. (eds.) Trust 2015. LNCS, vol. 9229, pp. 163–180. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22846-4_10

    Chapter  Google Scholar 

  16. McConaghy, T., Marques, R., Müller, A., et al.: Bigchaindb: a scalable blockchain database. white paper, BigChainDB (2016)

    Google Scholar 

  17. Bradshaw, S., Brazil, E., Chodorow, K.: MongoDB: The Definitive Guide: Powerful and Scalable Data storage. O’Reilly Media, Sebastopol (2019)

    Google Scholar 

  18. Li, Y., Zheng, K., Yan, Y., Liu, Q., Zhou, X.: EtherQL: a query layer for blockchain system. In: Candan, S., Chen, L., Pedersen, T.B., Chang, L., Hua, W. (eds.) DASFAA 2017. LNCS, vol. 10178, pp. 556–567. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55699-4_34

    Chapter  Google Scholar 

  19. Zhu, Y., Zhang, Z., Jin, C., et al.: SEBDB: semantics empowered blockchain database. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 1820–1831. IEEE (2019)

    Google Scholar 

  20. Ruan, P., Dinh, T.T.A., Lin, Q., et al.: LineageChain: a fine-grained, secure and efficient data provenance system for blockchains. VLDB J. 30, 3–24 (2021)

    Article  Google Scholar 

  21. Wang, S., Dinh, T.T.A., Lin, Q., et al.: Forkbase: an efficient storage engine for blockchain and forkable applications. arXiv preprint arXiv:1802.04949 (2018)

  22. Zhou, E., Hong, Z., Xiao, Y., et al.: MSTDB: a hybrid storage-empowered scalable semantic blockchain database. IEEE Trans. Knowl. Data Eng. (2022)

    Google Scholar 

  23. Mahapatra, A.K., Biswas, S.: Inverted indexes: types and techniques. Int. J. Comput. Sci. Issues (IJCSI) 8(4), 384 (2011)

    Google Scholar 

  24. Xu C, Zhang C, Xu J.: vchain: enabling verifiable Boolean range queries over blockchain databases. In: Proceedings of the 2019 International Conference on Management of Data, pp. 141–158 (2019)

    Google Scholar 

  25. Wang, H., Xu, C., Zhang, C., et al.: vChain+: optimizing verifiable blockchain Boolean range queries. In: 2022 IEEE 38th International Conference on Data Engineering (ICDE), pp. 1927–1940. IEEE (2022)

    Google Scholar 

  26. Frauenthaler, P., Sigwart, M., Spanring, C., et al.: ETH relay: a cost-efficient relay for ethereum-based blockchains. In: 2020 IEEE International Conference on Blockchain (Blockchain), pp. 204–213. IEEE (2020)

    Google Scholar 

  27. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant payments (2016)

    Google Scholar 

  28. Hope-Bailie, A., Thomas, S.: Interledger: creating a standard for payments. In: Proceedings of the 25th International Conference Companion on World Wide Web, pp. 281–282 (2016)

    Google Scholar 

  29. Kwon, J., et al.: A network of distributed ledgers. Cosmos. Accessed 1–41 2018

    Google Scholar 

  30. Wood, G.: Polkadot: vision for a heterogeneous multi-chain framework. White Paper 21(2327), 4662 (2016)

    Google Scholar 

  31. Milanov, E.: The RSA algorithm. RSA Laboratories, 1–11 (2009)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Key Research and Development Program of China under Grant 2022YFB3102700, the National Natural Science Foundation of China under Grant 62132013, 62102295, 62202358, the Key Research and Development Programs of Shaanxi under Grants 2021ZDLGY06-03, the Guangdong Leading Talent Program No. 2016LJ06D658 and the Guangdong Innovation Team Program No. 2018KCXTD030. We also appreciate Alibaba Cloud Intelligent Computing LINGJUN to provide the powerful computation ability in the experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Xiao or Qingqi Pei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tian, J., Xiao, Y., Zhou, E., Pei, Q. (2024). A Cross-Chain System Supports Verifiable Complete Data Provenance Queries. In: Tari, Z., Li, K., Wu, H. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2023. Lecture Notes in Computer Science, vol 14489. Springer, Singapore. https://doi.org/10.1007/978-981-97-0798-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0798-0_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0797-3

  • Online ISBN: 978-981-97-0798-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics