Abstract
In recent years, blockchain has been widely used as a decentralized database. However, its limited scalability makes it unsuitable for large-scale applications. To overcome this challenge, high scalability cross-chain technologies have become crucial for implementing blockchain applications. While existing cross-chain technologies focus on implementing cross-chain logic, ignoring the issue of incomplete results that may arise when querying data provenance in cross-chain systems. In this work, we propose a cross-chain system that supports efficient and verifiable complete data provenance queries. We achieve this by designing an index based on a linear list and adjacent linked list to store related transactions, enabling us to perform a complete query. We also utilize vector commitments to generate verification objects indicating whether transactions are included in our index entries, ensuring verifiable integrity of query results. Furthermore, we construct an index structure based on B+ tree and Merkle tree to enhance the system’s availability and query efficiency. Our experimental results demonstrate that our scheme not only has excellent performance in terms of the cost of verification object, but it also improves query efficiency by approximately two times.
J. Tian and E. Zhou—These authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bitcoin, N.S.: A peer-to-peer electronic cash system. Decentral. Bus. Rev. 21260 (2008)
Buterin, V.: A next-generation smart contract and decentralized application platform. White Paper 3(37), 2–1
Androulaki, E., Barger, A., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, pp. 1–15 (2018)
Biswas, D., Jalali, H., Ansaripoor, A.H., et al.: Traceability vs. sustainability in supply chains: the implications of blockchain. Eur. J. Oper. Res. 305(1), 128–147 (2023)
Patel, R., Migliavacca, M., Oriani, M.: Blockchain in Banking and Finance: is the best yet to come? A bibliometric review. Res. Int. Bus. Fin. 101718 (2022)
Taherdoost, H.: Blockchain-based internet of medical things. Appl. Sci. 13(3), 1287 (2023)
Belchior, R., et al.: A survey on blockchain interoperability: past, present, and future trends. ACM Comput. Surv. (CSUR) 54(8), 1–41 (2021)
Peng, Z., Wu, H., Xiao, B., et al.: VQL: providing query efficiency and data authenticity in blockchain systems. In: 2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW), pp. 1–6. IEEE (2019)
Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 2014(151), 1–32 (2014)
Zhu, Y., Zhang, Z., Jin, C., et al.: Towards rich Query blockchain database. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 3497–3500 (2020)
Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_5
Graefe, G.: Modern B-tree techniques. Found. Trends® Databases 3(4), 203–402 (2011)
De Ocáriz Borde, H.S.: An Overview of Trees in Blockchain Technology: Merkle Trees and Merkle Patricia Tries (2022)
Muzammal, M., Qu, Q., Nasrulin, B., et al.: A blockchain database application platform. arXiv preprint arXiv:1808.05199 (2018)
Armknecht, F., Karame, G.O., Mandal, A., Youssef, F., Zenner, E.: Ripple: overview and outlook. In: Conti, M., Schunter, M., Askoxylakis, I. (eds.) Trust 2015. LNCS, vol. 9229, pp. 163–180. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22846-4_10
McConaghy, T., Marques, R., Müller, A., et al.: Bigchaindb: a scalable blockchain database. white paper, BigChainDB (2016)
Bradshaw, S., Brazil, E., Chodorow, K.: MongoDB: The Definitive Guide: Powerful and Scalable Data storage. O’Reilly Media, Sebastopol (2019)
Li, Y., Zheng, K., Yan, Y., Liu, Q., Zhou, X.: EtherQL: a query layer for blockchain system. In: Candan, S., Chen, L., Pedersen, T.B., Chang, L., Hua, W. (eds.) DASFAA 2017. LNCS, vol. 10178, pp. 556–567. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55699-4_34
Zhu, Y., Zhang, Z., Jin, C., et al.: SEBDB: semantics empowered blockchain database. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 1820–1831. IEEE (2019)
Ruan, P., Dinh, T.T.A., Lin, Q., et al.: LineageChain: a fine-grained, secure and efficient data provenance system for blockchains. VLDB J. 30, 3–24 (2021)
Wang, S., Dinh, T.T.A., Lin, Q., et al.: Forkbase: an efficient storage engine for blockchain and forkable applications. arXiv preprint arXiv:1802.04949 (2018)
Zhou, E., Hong, Z., Xiao, Y., et al.: MSTDB: a hybrid storage-empowered scalable semantic blockchain database. IEEE Trans. Knowl. Data Eng. (2022)
Mahapatra, A.K., Biswas, S.: Inverted indexes: types and techniques. Int. J. Comput. Sci. Issues (IJCSI) 8(4), 384 (2011)
Xu C, Zhang C, Xu J.: vchain: enabling verifiable Boolean range queries over blockchain databases. In: Proceedings of the 2019 International Conference on Management of Data, pp. 141–158 (2019)
Wang, H., Xu, C., Zhang, C., et al.: vChain+: optimizing verifiable blockchain Boolean range queries. In: 2022 IEEE 38th International Conference on Data Engineering (ICDE), pp. 1927–1940. IEEE (2022)
Frauenthaler, P., Sigwart, M., Spanring, C., et al.: ETH relay: a cost-efficient relay for ethereum-based blockchains. In: 2020 IEEE International Conference on Blockchain (Blockchain), pp. 204–213. IEEE (2020)
Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant payments (2016)
Hope-Bailie, A., Thomas, S.: Interledger: creating a standard for payments. In: Proceedings of the 25th International Conference Companion on World Wide Web, pp. 281–282 (2016)
Kwon, J., et al.: A network of distributed ledgers. Cosmos. Accessed 1–41 2018
Wood, G.: Polkadot: vision for a heterogeneous multi-chain framework. White Paper 21(2327), 4662 (2016)
Milanov, E.: The RSA algorithm. RSA Laboratories, 1–11 (2009)
Acknowledgement
This work is supported by the National Key Research and Development Program of China under Grant 2022YFB3102700, the National Natural Science Foundation of China under Grant 62132013, 62102295, 62202358, the Key Research and Development Programs of Shaanxi under Grants 2021ZDLGY06-03, the Guangdong Leading Talent Program No. 2016LJ06D658 and the Guangdong Innovation Team Program No. 2018KCXTD030. We also appreciate Alibaba Cloud Intelligent Computing LINGJUN to provide the powerful computation ability in the experiments.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Tian, J., Xiao, Y., Zhou, E., Pei, Q. (2024). A Cross-Chain System Supports Verifiable Complete Data Provenance Queries. In: Tari, Z., Li, K., Wu, H. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2023. Lecture Notes in Computer Science, vol 14489. Springer, Singapore. https://doi.org/10.1007/978-981-97-0798-0_14
Download citation
DOI: https://doi.org/10.1007/978-981-97-0798-0_14
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-0797-3
Online ISBN: 978-981-97-0798-0
eBook Packages: Computer ScienceComputer Science (R0)