Skip to main content

Solving Client Dropout in Federated Learning via Client Similarity Discovery and Gradient Supplementation Mechanism

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14491))

  • 134 Accesses

Abstract

In the realm of practical applications of federated learning, an issue arises wherein the performance suffers due to passive client disconnections during the federated training process, caused by factors such as resource limitations or network disruptions. This paper introduces a More Precise Similarity Discovery and Gradient Supplementation(MPSDGS) algorithm, which tackles the problem of passive client dropout in federated learning by employing precise clustering techniques to identify similar clients. It further leverages the gradients of clients whose data distribution closely aligns with the disconnected clients, effectively supplementing the disconnected client gradients. The algorithm’s efficacy is verified through experimental evaluations conducted on real-world datasets, namely MNIST, CIFAR10, and CIFAR100. The experimental findings reveal that, under the same non-independent and identically distributed data partitioning approach for MNIST and CIFAR10 datasets, MPSDGS achieves notable accuracy enhancements. Specifically, at disconnection rates of 0.3, 0.5, and 0.7, the MPSDGS algorithm improves the accuracy of the MNIST dataset by 1.33%, 1.49%, and 1.35%, respectively. Similarly, for the CIFAR10 dataset, the algorithm enhances accuracy by 1.09%, 1.25%, and 1.6%, respectively, at the aforementioned disconnection rates. Remarkably, MPSDGS exhibits comparable excellence in performance on the CIFAR100 dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bharati, S., Mondal, M., Podder, P., Prasath, V.: Federated learning: applications, challenges and future scopes. Inter. J. Hybrid Intell. Syst. (Preprint), 1–17 (2022)

    Google Scholar 

  2. Zhou, X., Sun, Y., Wang, D., Ge, H.: Survey of federated learning research Chinese journal of network and information. Security 7(5), 77–92 (2021)

    Google Scholar 

  3. Lim, W.Y.B., et al.: Federated learning in mobile edge networks: a comprehensive survey. IEEE Commun. Surv. Tutorials 22(3), 2031–2063 (2020)

    Article  Google Scholar 

  4. Yang, Q., Tong, Y., Wang, Y., et al.: A survey of federated learning algorithms in swarm intelligence. J. Intel. Sci. Technol. 4(1), 29–44 (2022)

    Google Scholar 

  5. Wang, H., Xu, J.: Combating client dropout in federated learning via friend model substitution (2023)

    Google Scholar 

  6. Hartigan, J.A., Wong, M.A.: Algorithm as 136: A k-means clustering algorithm. J. Royal Statist. Soc.. Series c (Appli. Statist.) 28(1), 100–108 (1979)

    Google Scholar 

  7. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-iid data. arXiv preprint arXiv:1806.00582 (2018)

  8. Rodgers, J.L., Nicewander, W.A.: Thirteen ways to look at the correlation coefficient. American Statist., 59–66 (1988)

    Google Scholar 

  9. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  10. Blakley, G.R.: Safeguarding cryptographic keys. In: Managing Requirements Knowledge, International Workshop on, pp. 313–313. IEEE Computer Society (1979)

    Google Scholar 

  11. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

    Chapter  Google Scholar 

  12. Huang, T., Lin, W., Wu, W., He, L., Li, K., Zomaya, A.Y.: An efficiency-boosting client selection scheme for federated learning with fairness guarantee. IEEE Trans. Parallel Distrib. Syst. 32(7), 1552–1564 (2020)

    Google Scholar 

  13. Wang,H., Kaplan,Z., Niu,D., et al.: Optimizing federated learning on non-iid data with re-inforcement learning. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications IEEE, pp.1698-1707(2020)

    Google Scholar 

  14. Ribero, M., Vikalo, H.: Communication-efficient federated learning via optimal client sampling. arXiv preprint arXiv:2007.15197 (2020)

  15. Wang, H., Kaplan, Z., Niu, D., Li, B.: Optimizing federated learning on non-iid data with reinforcement learning. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pp. 1698–1707. IEEE (2020)

    Google Scholar 

  16. Lai, F., Zhu, X., Madhyastha, H.V., Chowdhury, M.: Oort: efficient federated learning via guided participant selection. In: OSDI, pp. 19–35 (2021)

    Google Scholar 

  17. Wu, H., Wang, P.: Node selection toward faster convergence for federated learning on non-iid data. IEEE Trans. Netw. Sci. Eng. 9(5), 3099–3111 (2022)

    Article  MathSciNet  Google Scholar 

  18. China Information and Communication Research Institute, Alibaba (China) Co. , Ltd. , Beijing Digital Bamboo Technology Co. , Ltd. Privacy Protection Computing Technology Research Report (2020)

    Google Scholar 

  19. Shao, J., Sun, Y., Li, S., Zhang, J.: Dres-fl: dropout-resilient secure federated learning for non-iid clients via secret data sharing. arXiv preprint arXiv:2210.02680 (2022)

  20. Zhu, J., Li, S.: Generalized lagrange coded computing: a flexible computation-communication tradeoff. In: 2022 IEEE International Symposium on Information Theory (ISIT), pp. 832–837. IEEE (2022)

    Google Scholar 

  21. Lu, H., Wang, L.: User-oriented data privacy preserving method for federated learning that supports user disconnection. Netinfo Sec. 21(3), 64–71 (2021)

    Google Scholar 

  22. Luo, C., Zhan, J., Xue, X., Wang, L., Ren, R., Yang, Q.: Cosine normalization: using cosine similarity instead of dot product in neural networks. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11139, pp. 382–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01418-6_38

    Chapter  Google Scholar 

  23. Meyes, R., Lu, M., de Puiseau, C.W., Meisen, T.: Ablation studies in artificial neural networks. arXiv preprint arXiv:1901.08644 (2019)

  24. Deng, L.: The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

    Article  Google Scholar 

  25. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  26. Collins, L., Hassani, H., Mokhtari, A., Shakkottai, S.: Exploiting shared representations for personalized federated learning. In: International Conference on Machine Learning, pp. 2089–2099. PMLR (2021)

    Google Scholar 

Download references

Acknowledgement

We would like to express our gratitude for the insightful feedback provided by the reviewers of ICA3PP. This work is supported by Shandong Provincial Natural Science Foundation(NO.ZR2022MF264).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maoxuan Yan or Bo Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, M., Luo, Q., Zhang, B., Sun, S. (2024). Solving Client Dropout in Federated Learning via Client Similarity Discovery and Gradient Supplementation Mechanism. In: Tari, Z., Li, K., Wu, H. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2023. Lecture Notes in Computer Science, vol 14491. Springer, Singapore. https://doi.org/10.1007/978-981-97-0808-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0808-6_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0807-9

  • Online ISBN: 978-981-97-0808-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics