Skip to main content

Joint Optimization of System Bandwidth and Transmitting Power in Space-Air-Ground Integrated Mobile Edge Computing

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14492))

  • 126 Accesses

Abstract

Thanks to the rapid development of wireless communication technology, i.e., B5G, 6G, mobile edge computing (MEC) has emerged as a promising paradigm to facilitate various mobile applications, such as intelligent connected vehicles, internet of remote things (IoRT), etc. However, IoRT deployed in remote areas, e.g., oceans and deserts where terrestrial communication infrastructures are scarce or even unavailable, still suffers from poor quality of service due to unreliable connectivity. Facing this issue, this paper proposes a space-air-ground integrated MEC framework with heterogeneous space, air, and ground communication resources to provide seamless and high-throughput traffic offloading for IoRT. For the intractable traffic offloading problem of task-intensive IoRT devices in dynamic SAGIN environments due to high-speed satellite movement, we propose a joint optimization method for system bandwidth and transmitting power to minimize total traffic offloading delay in SAGIN. In view of the sequential decision-making property of the problem, we further transform it into a Markov decision problem, which is solved using the popular soft actor-critic reinforcement learning algorithm (SAC) with carefully designed reward functions. Extensive numerical results show that the RL-based traffic offloading policy can substantially reduce the delay of IoRT tasks, compared to baseline traffic offloading methods.

This work was supported in part by Zhejiang Provincial Natural Science Foundation of China under Grant No. LY22F020006, and Beijing Municipal Science and Technology Program under Grant No. Z221100007722001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, J., Du, X., Cui, J., et al.: Task-oriented intelligent networking architecture for the space-air-ground-aqua integrated network. IEEE Internet Things J. 7(6), 5345–5358 (2020)

    Article  Google Scholar 

  2. Mach, P., Becvar, Z.: Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun. Surv. Tutor. 19(3), 1628–1656 (2017)

    Article  Google Scholar 

  3. Jia, Z., Sheng, M., Li, J., et al.: LEO-satellite-assisted UAV: joint trajectory and data collection for internet of remote things in 6G aerial access networks. IEEE Internet Things J. 8(12), 9814–9826 (2020)

    Article  Google Scholar 

  4. Qiu, Y., Niu, J., Zhu, X., et al.: Mobile edge computing in space-air-ground integrated networks: architectures, key technologies and challenges. J. Sens. Actuator Netw. 11(4), 57 (2022)

    Article  Google Scholar 

  5. Zhu, X., Jiang, C.: Integrated satellite-terrestrial networks toward 6G: architectures, applications, and challenges. IEEE Internet Things J. 9(1), 437–461 (2021)

    Article  Google Scholar 

  6. Zhan, C., Zeng, Y.: Energy-efficient data uploading for cellular-connected UAV systems. IEEE Trans. Wireless Commun. 19(11), 7279–7292 (2020)

    Article  Google Scholar 

  7. Di, B., Zhang, H., Song, L., et al.: Ultra-dense LEO: integrating terrestrial-satellite networks into 5G and beyond for data offloading. IEEE Trans. Wireless Commun. 18(1), 47–62 (2018)

    Article  Google Scholar 

  8. SpaceX Non-Geostationary Satellite System, Federal Communications Commissions, Washington, DC, USA (2016)

    Google Scholar 

  9. OneWeb Non-Geostationary Satellite System, Federal Communications Commissions, Washington, DC, USA (2016)

    Google Scholar 

  10. Al-Hourani, A., Guvenc, I.: On modeling satellite-to-ground path-loss in urban environments. IEEE Commun. Lett. 25(3), 696–700 (2020)

    Article  Google Scholar 

  11. Wang, F., Zhang, X.: IRS/UAV-based edge-computing/traffic-offloading over RF-powered 6G mobile wireless networks. In: 2022 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1272–1277. IEEE (2022)

    Google Scholar 

  12. Li, X., Cheng, S., Ding, H., et al.: When UAVs meet cognitive radio: offloading traffic under uncertain spectrum environment via deep reinforcement learning. IEEE Trans. Wireless Commun. 22(2), 824–838 (2022)

    Article  Google Scholar 

  13. Wang, J., Li, D., Zhang, Z., et al.: Traffic offloading and resource allocation for PDMA-based integrated satellite/terrestrial networks. In: 2022 IEEE 4th International Conference on Power, Intelligent Computing and Systems (ICPICS), pp. 259–262. IEEE (2022)

    Google Scholar 

  14. Peng, C., He, Y., Zhao, S., et al.: Energy efficiency optimization for uplink traffic offloading in the integrated satellite-terrestrial network. Wireless Netw. 28(3), 1147–1161 (2022)

    Article  Google Scholar 

  15. Jia, Z., Sheng, M., Li, J., et al.: Toward data collection and transmission in 6G space-air-ground integrated networks: cooperative HAP and LEO satellite schemes. IEEE Internet Things J. 9(13), 10516–10528 (2021)

    Article  Google Scholar 

  16. Tang, F., Wen, C., Luo, L., et al.: Blockchain-based trusted traffic offloading in space-air-ground integrated networks (SAGIN): a federated reinforcement learning approach. IEEE J. Sel. Areas Commun. 40(12), 3501–3516 (2022)

    Article  Google Scholar 

  17. Tang, Q., Fei, Z., Li, B., et al.: Computation offloading in LEO satellite networks with hybrid cloud and edge computing. IEEE Internet Things J. 8(11), 9164–9176 (2021)

    Article  Google Scholar 

  18. Fu, S., Gao, J., Zhao, L.: Integrated resource management for terrestrial-satellite systems. IEEE Trans. Veh. Technol. 69(3), 3256–3266 (2020)

    Article  Google Scholar 

  19. Elbert, B.R.: Introduction to satellite communication. Artech House (2008)

    Google Scholar 

  20. Mao, S., He, S., Wu, J.: Joint UAV position optimization and resource scheduling in space-air-ground integrated networks with mixed cloud-edge computing. IEEE Syst. J. 15(3), 3992–4002 (2020)

    Article  Google Scholar 

  21. Wu, Q., Zeng, Y., Zhang, R.: Joint trajectory and communication design for multi-UAV enabled wireless networks. IEEE Trans. Wireless Commun. 17(3), 2109–2121 (2018)

    Article  Google Scholar 

  22. Song, Z., Hao, Y., Liu, Y., et al.: Energy-efficient multiaccess edge computing for terrestrial-satellite internet of things. IEEE Internet Things J. 8(18), 14202–14218 (2021)

    Article  Google Scholar 

  23. Ding, C., Wang, J.B., Zhang, H., et al.: Joint optimization of radio and computation resources for satellite-aerial assisted edge computing. In: ICC 2021-IEEE International Conference on Communications, pp. 1–6. IEEE (2021)

    Google Scholar 

  24. Yu, S., Gong, X., Shi, Q., et al.: EC-SAGINs: edge-computing-enhanced space-air-ground-integrated networks for internet of vehicles. IEEE Internet Things J. 9(8), 5742–5754 (2021)

    Article  Google Scholar 

  25. Pervez, F., Zhao, L., Yang, C.: Joint user association, power optimization and trajectory control in an integrated satellite-aerial-terrestrial network. IEEE Trans. Wireless Commun. 21(5), 3279–3290 (2021)

    Article  Google Scholar 

  26. Tang, F., Hofner, H., Kato, N., et al.: A deep reinforcement learning-based dynamic traffic offloading in space-air-ground integrated networks (SAGIN). IEEE J. Sel. Areas Commun. 40(1), 276–289 (2021)

    Article  Google Scholar 

  27. Li, S., Hu, X., Du, Y.: Deep reinforcement learning for computation offloading and resource allocation in unmanned-aerial-vehicle assisted edge computing. Sensors 21(19), 6499 (2021)

    Article  Google Scholar 

  28. Zhang, D., Cao, L., Zhu, H., et al.: Task offloading method of edge computing in internet of vehicles based on deep reinforcement learning. Clust. Comput. 25(2), 1175–1187 (2022)

    Article  Google Scholar 

  29. Yao, Y., Ren, T., Qiu, Y., et al.: Computation offloading and resource allocation based on multi-agent federated learning. In: Qiu, M., Gai, K., Qiu, H. (eds.) SmartCom 2021, pp. 404–415. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97774-0_37

    Chapter  Google Scholar 

  30. Haarnoja, T., Zhou, A., Hartikainen, K., et al.: Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905 (2018)

  31. Duan, Y., Chen, X., Houthooft, R., et al.: Benchmarking deep reinforcement learning for continuous control. In: International Conference on Machine Learning, pp. 1329–1338. PMLR (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qiu, Y. et al. (2024). Joint Optimization of System Bandwidth and Transmitting Power in Space-Air-Ground Integrated Mobile Edge Computing. In: Tari, Z., Li, K., Wu, H. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2023. Lecture Notes in Computer Science, vol 14492. Springer, Singapore. https://doi.org/10.1007/978-981-97-0811-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0811-6_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0810-9

  • Online ISBN: 978-981-97-0811-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics