Skip to main content

CFDM-IME: A Collaborative Fault Diagnosis Method for Intelligent Manufacturing Equipment

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14487))

  • 632 Accesses

Abstract

The stability of the intelligent manufacturing industry will directly affect the development of the social economy. The privacy of data among different smart factories (SF) leads to a lack of generalization of existing deep learning-based fault diagnosis methods. In order to solve the problems existing in the fault diagnosis method, this paper combines blockchain, federated learning, and deep learning to propose a collaborative fault diagnosis method for intelligent manufacturing equipment (CFDM-IME). Specifically, firstly, a fault diagnosis model based on LSTM is proposed to realize local model training of local intelligent manufacturing equipment. Then, a domain parameter aggregation method based on a federated average is proposed to realize the aggregation of internal model parameters of smart factories. Then, the parameter collaborative optimization smart contract is designed and implemented to achieve the aggregation of global parameters. Finally, we conduct simulation experiments on the proposed method. Theoretical and simulation experiments prove that our proposed architecture is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Maddikunta, P.K.R., et al.: Industry 5.0: a survey on enabling technologies and potential applications. J. Ind. Inf. Integr. 26, 100257 (2022)

    Google Scholar 

  2. Xu, X., Lu, Y., Vogel-Heuser, B., Wang, L.: Industry 4.0 and industry 5.0—inception, conception and perception. J. Manuf. Syst. 61, 530–535 (2021)

    Article  Google Scholar 

  3. Chi, Y., Dong, Y., Wang, Z.J., Yu, F.R., Leung, V.C.: Knowledge-based fault diagnosis in industrial internet of things: a survey. IEEE Internet Things J. 9(15), 12886–12900 (2022)

    Article  Google Scholar 

  4. Sinche, S., et al.: A survey of IoT management protocols and frameworks. IEEE Commun. Surv. Tut. 22(2), 1168–1190 (2019)

    Article  Google Scholar 

  5. Sheut, C., Krajewski, L.: A decision model for corrective maintenance management. Int. J. Prod. Res. 32(6), 1365–1382 (1994)

    Article  Google Scholar 

  6. Barlow, R., Hunter, L.: Optimum preventive maintenance policies. Oper. Res. 8(1), 90–100 (1960)

    Article  MathSciNet  Google Scholar 

  7. Mobley, R.K.: An Introduction to Predictive Maintenance. Elsevier (2002)

    Google Scholar 

  8. Amelia, M., Aspiranti, T.: Analisis pemeliharaan mesin conveyor menggunakan metode preventive dan breakdown maintenance untuk meminimumkan biaya pemeliharaan mesin pada pt x. Jurnal Riset Manajemen dan Bisnis 1, 1–9 (2021)

    Article  Google Scholar 

  9. Dui, H., Zhang, C., Tian, T., Wu, S.: Different costs-informed component preventive maintenance with system lifetime changes. Reliab. Eng. Syst. Saf. 228, 108755 (2022)

    Article  Google Scholar 

  10. Zhang, W., Yang, D., Wang, H.: Data-driven methods for predictive maintenance of industrial equipment: a survey. IEEE Syst. J. 13(3), 2213–2227 (2019)

    Article  Google Scholar 

  11. Ong, K.S.H., Wang, W., Hieu, N.Q., Niyato, D., Friedrichs, T.: Predictive maintenance model for IIoT-based manufacturing: a transferable deep reinforcement learning approach. IEEE Internet Things J. 9(17), 15725–15741 (2022)

    Article  Google Scholar 

  12. Liu, Z., Fang, L., Jiang, D., Qu, R.: A machine-learning-based fault diagnosis method with adaptive secondary sampling for multiphase drive systems. IEEE Trans. Power Electron. 37(8), 8767–8772 (2022)

    Article  Google Scholar 

  13. He, D., Liu, C., Jin, Z., Ma, R., Chen, Y., Shan, S.: Fault diagnosis of flywheel bearing based on parameter optimization variational mode decomposition energy entropy and deep learning. Energy 239, 122108 (2022)

    Article  Google Scholar 

  14. Zhang, L., Zhang, H., Cai, G.: The multiclass fault diagnosis of wind turbine bearing based on multisource signal fusion and deep learning generative model. IEEE Trans. Instrum. Meas. 71, 1–12 (2022)

    Google Scholar 

  15. Wang, H., Liu, C., Jiang, D., Jiang, Z.: Collaborative deep learning framework for fault diagnosis in distributed complex systems. Mech. Syst. Sig. Process. 156, 107650 (2021)

    Article  Google Scholar 

  16. Shao, H., Lin, J., Zhang, L., Galar, D., Kumar, U.: A novel approach of multisensory fusion to collaborative fault diagnosis in maintenance. Inf. Fus. 74, 65–76 (2021)

    Article  Google Scholar 

  17. Ren, L., Jia, Z., Wang, T., Ma, Y., Wang, L.: LM-CNN: a cloud-edge collaborative method for adaptive fault diagnosis with label sampling space enlarging. IEEE Trans. Industr. Inf. 18(12), 9057–9067 (2022)

    Article  Google Scholar 

  18. Torcianti, A., Matzka, S.: Explainable artificial intelligence for predictive maintenance applications using a local surrogate model. In: 2021 4th International Conference on Artificial Intelligence for Industries (AI4I), pp. 86–88. IEEE (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities under Grant 2020ZDPY0223.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohu Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Zhou, T., Zhao, X., Hu, X. (2024). CFDM-IME: A Collaborative Fault Diagnosis Method for Intelligent Manufacturing Equipment. In: Tari, Z., Li, K., Wu, H. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2023. Lecture Notes in Computer Science, vol 14487. Springer, Singapore. https://doi.org/10.1007/978-981-97-0834-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0834-5_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0833-8

  • Online ISBN: 978-981-97-0834-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics