Skip to main content

Efficient Graph Sequence Reinforcement Learning for Traveling Salesman Problem

  • Conference paper
  • First Online:
Data Mining and Big Data (DMBD 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2017))

Included in the following conference series:

  • 98 Accesses

Abstract

The Traveling Salesman Problem is formulated as a sequence to sequence problem, and then policy gradient, graph convolutional networks, and multi-head attention techniques are applied to generate the according sequence model. The model is trained and tested by reinforcement learning on small-scale graphs. In addition, we use the 2-optimization algorithm to improve the model’s generation performance during the testing process. The results demonstrate that the proposed method, which is called Graph Sequence Reinforcement Learning Model, can be trained on small-scale graphs effectively without supervision and can be applied to solve TSP with large-scale graphs directly. Moreover, the performance of the proposed surpasses some of the state-of-the-art heuristic algorithms with high performance, and the ablation experiment shows that each part of the model is helpful for improving performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartmanis, J.: Computers and intractability: a guide to the theory of np-completeness (michael r. garey and david s. johnson). Siam Rev. 24, 90 (1982)

    Google Scholar 

  2. Robust, F., Daganzo, C.F., Souleyrette, R.R., II.: Implementing vehicle routing models. Transp. Res. Part B Methodol. 24, 263–286 (1990)

    Article  Google Scholar 

  3. Zunic, E., Besirevic, A., Skrobo, R., Hasic, H., Hodzic, K., Djedovic, A.: Design of optimization system for warehouse order picking in real environment. In: XXVI International Conference on Information, Communication and Automation Technologies (ICAT), pp. 1–6. IEEE (2017)

    Google Scholar 

  4. Anbuudayasankar, S., Ganesh, K., Mohapatra, S.: Models for Practical Routing Problems in Logistics. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-05035-5

    Book  Google Scholar 

  5. Goh, Y.L., Lee, W.S., Bresson, X., Laurent, T., Lim, N.: Combining reinforcement learning and optimal transport for the traveling salesman problem. arXiv preprint arXiv:2203.00903 (2022)

  6. Le, N., Rathour, V.S., Yamazaki, K., Luu, K., Savvides, M.: Deep reinforcement learning in computer vision: a comprehensive survey. Artif. Intell. Rev. 55(4), 2733–2819 (2021). https://doi.org/10.1007/s10462-021-10061-9

    Article  Google Scholar 

  7. Arkhangelskaya, E.O., Nikolenko, S.I.: Deep learning for natural language processing: a survey. J. Math. Sci. 273, 533–582 (2023). https://doi.org/10.1007/s10958-023-06519-6

    Article  MathSciNet  Google Scholar 

  8. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization: a methodological tour d’horizon. Eur. J. Oper. Res. 290, 405–421 (2021)

    Article  MathSciNet  Google Scholar 

  9. Qiu, R., Sun, Z., Yang, Y.: DIMES: a differentiable meta solver for combinatorial optimization problems. In: Advances in Neural Information Processing Systems, vol. 35, pp. 25531–25546 (2022)

    Google Scholar 

  10. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940 (2016)

  11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  12. Joshi, C.K., Laurent, T., Bresson, X.: An efficient graph convolutional network technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227 (2019)

  13. Ma, Q., Ge, S., He, D., Thaker, D., Drori, I.: Combinatorial optimization by graph pointer networks and hierarchical reinforcement learning. arXiv preprint arXiv:1911.04936 (2019)

  14. Bresson, X., Laurent, T.: The transformer network for the traveling salesman problem. arXiv preprint arXiv:2103.03012 (2021)

  15. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  16. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  17. Kool, W., Van Hoof, H., Welling, M.: Attention, learn to solve routing problems! arXiv preprint arXiv:1803.08475 (2018)

  18. Kool, W., van Hoof, H., Gromicho, J., Welling, M.: Deep policy dynamic programming for vehicle routing problems. In: Schaus, P. (ed.) CPAIOR 2022, vol. 13292, pp. 190–213. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08011-1_14

    Chapter  Google Scholar 

  19. Kielak, K.: Importance of using appropriate baselines for evaluation of data-efficiency in deep reinforcement learning for Atari. arXiv preprint arXiv:2003.10181 (2020)

  20. Cook, W.J., Applegate, D.L., Bixby, R.E., Chvatal, V.: The Traveling Salesman Problem: A Computational Study. Princeton University Press (2011)

    Google Scholar 

  21. Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA J. Comput. 3, 376–384 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiyang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Li, L. (2024). Efficient Graph Sequence Reinforcement Learning for Traveling Salesman Problem. In: Tan, Y., Shi, Y. (eds) Data Mining and Big Data. DMBD 2023. Communications in Computer and Information Science, vol 2017. Springer, Singapore. https://doi.org/10.1007/978-981-97-0837-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0837-6_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0836-9

  • Online ISBN: 978-981-97-0837-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics