Skip to main content

A Local Interpretability Model-Based Approach for Black-Box Adversarial Attack

  • Conference paper
  • First Online:
Data Mining and Big Data (DMBD 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2018))

Included in the following conference series:

  • 80 Accesses

Abstract

Deep learning models are vulnerable to adversarial examples due to their fragility. Current black-box attack methods typically add perturbations to the whole example, and added perturbations may be large and easily detected by human eyes. This study proposes a Local Interpretable Model-agnostic Explanations (LIME)-based approach for black-box adversarial Attack (LIME-Attack). The approach can reduce the size of perturbations via adding perturbations in discriminative regions of an example. First, LIME is used to interpret a black-box model to obtain discriminative regions of an example. Then, the gradient information of the example is estimated by a derivative-free optimization method (Nature Evolution Strategy). Utilizing the gradient information, two white-box attack methods are adapted to generate perturbations, which are added in discriminative regions of the example to form an adversarial example. LIME-Attack is applied to several typical neural network models. Experiments show that it can achieve a high attack success rate with perturbation size 10%–30% lower than that of comparative methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dong, S., Wang, P., Abbas, K.: A survey on deep learning and its applications. Comput. Sci. Rev. 40, 100379 (2021)

    Article  MathSciNet  Google Scholar 

  2. Szegedy, C., Zaremba, W., Sutskever, I., et al.: Intriguing properties of neural networks. In: 2nd International Conference on Learning Representations (2014)

    Google Scholar 

  3. Huang, X., Kroening, D., Ruan, W., et al.: A survey of safety and trustworthiness of deep neural networks: verification, testing, adversarial attack and defence, and interpretability. Comput. Sci. Rev. 37, 100270 (2021)

    Article  MathSciNet  Google Scholar 

  4. Qiu, S., Liu, Q., Zhou, S., Wu, C.: Review of artificial intelligence adversarial attack and defense technologies. Appl. Sci. 9(5), 909 (2019)

    Article  Google Scholar 

  5. Chen, P., Zhang, H., Sharma, Y., et al.: ZOO: zeroth order optimization based black-box attacks to deep neural networks without training substitute models. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 15–26 (2017)

    Google Scholar 

  6. Tu, C., Ting, P., Chen, P., et al.: Autozoom: Autoencoder-based zeroth order optimization method for attacking black-box neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 742–749 (2019)

    Google Scholar 

  7. Shi, Y., Wang, S., Han, Y.: Curls & Whey: boosting black-box adversarial attacks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6519–6527 (2019)

    Google Scholar 

  8. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  9. Selvaraju, R., Cogswell, M., Das, A., et al.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  10. Xiang, T., Liu, H., Guo, S., Zhang, T., Liao, X.: Local black-box adversarial attacks: a query efficient approach. arXiv preprint arXiv:2101.01032 (2021)

  11. Duan, Y., Zhou, X., Zou, J., Qiu, J., Zhang, J., Pan, Z.: Mask-guided noise restriction adversarial attacks for image classification. Comput. Secur. 100, 102111 (2021)

    Article  Google Scholar 

  12. Papernot, N., McDaniel, P., Jha, S., et al.: The limitations of deep learning in adversarial settings. In: IEEE European Symposium on Security and Privacy, pp. 372–387 (2016)

    Google Scholar 

  13. Ribeiro, M., Singh, S., Guestrin, C.: “Why should i trust you?” Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  14. Wierstra, D., Schaul, T., Glasmachers, T., et al.: Natural evolution strategies. J. Mach. Learn. Res. 15(1), 949–980 (2014)

    MathSciNet  Google Scholar 

  15. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: International Conference on Learning Representations (2015)

    Google Scholar 

  16. Madry, A., Makelov, A., Schmidt, L., et al.: Towards deep learning models resistant to adversarial attacks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  17. Bhambri, S., Muku, S., Tulasi, A., et al.: A survey of black-box adversarial attacks on computer vision models. arXiv preprint arXiv:1912.01667 (2019)

  18. Andriushchenko, M., Croce, F., Flammarion, N., Hein, M.: Square attack: a query-efficient black-box adversarial attack via random search. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 484–501. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_29

    Chapter  Google Scholar 

  19. Guidotti, R., Monreale, A., Ruggieri, S., et al.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 1–42 (2018)

    Article  Google Scholar 

  20. Baehrens, D., Schroeter, T., Harmeling, S., et al.: How to explain individual classification decisions. J. Mach. Learn. Res. 11, 1803–1831 (2010)

    MathSciNet  Google Scholar 

  21. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  22. Szegedy, C., Vanhoucke, V., Ioffe, S., et al.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  23. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations, pp. 7–9 (2015)

    Google Scholar 

  25. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  26. Ilyas, A., Engstrom, L., Madry, A.: Prior convictions: black-box adversarial attacks with bandits and priors. In: International Conference on Learning Representations (2019)

    Google Scholar 

  27. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

  28. Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 20th International Conference on Pattern Recognition, pp. 2366–2369 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingquan Zuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duan, Y., Zuo, X., Huang, H., Wu, B., Zhao, X. (2024). A Local Interpretability Model-Based Approach for Black-Box Adversarial Attack. In: Tan, Y., Shi, Y. (eds) Data Mining and Big Data. DMBD 2023. Communications in Computer and Information Science, vol 2018. Springer, Singapore. https://doi.org/10.1007/978-981-97-0844-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0844-4_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0843-7

  • Online ISBN: 978-981-97-0844-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics