Skip to main content

CAST: An Intricate-Scene Aware Adaptive Bitrate Approach for Video Streaming via Parallel Training

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14490))

  • 107 Accesses

Abstract

Adaptive Bitrate (ABR) algorithms have become increasingly important for delivering high-quality video content over fluctuating networks. Considering the complexity of video scenes, video chunks can be separated into two categories: those with intricate scenes and those with simple scenes. In practice, improving the quality of intricate chunks can lead to more significant improvements in Quality of Experience (QoE) than improving simple chunks. However, current schemes either assign equal priority to all chunks or optimize using a fixed linear-based reward function, making them inadequate for meeting real-world requirements. To tackle these limitations, this paper introduces a novel ABR approach that explicitly considers bitrate adaptation as the primary objective. The proposed approach, CAST (Complex-scene Aware bitrate algorithm via Self-play reinforcemenT learning), leverages the power of parallel computing with multiple agents to train a neural network, aiming to achieve superior video playback quality for intricate scenes while minimizing frequent freezing events. The extensive trace-driven evaluation and subjective test results demonstrate that CAST outperforms existing off-the-shelf schemes.

This work was conducted during the pursuit of a Master’s degree by Weihe Li at Central South University. This work was supported in part by the National Natural Science Foundation of China (62302524, 62132022); in part by the Key Research and Development Program of Hunan under Grant 2022WK2005; in part by the Natural Science Foundation of Hunan Province, China, under Grant 2021JJ30867; and in part by using computing resources at the High Performance Computing Center of Central South University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, we employ the average chunk rebuffering time as an indicator of the rebuffering experience. This measure is computed by dividing the total rebuffering time by the total number of chunks [19].

References

  1. Hu, J., Huang, J., Li, Z., Wang, J., He, T.: A receiver-driven transport protocol with high link utilization using anti-ECN marking in data center networks. IEEE Trans. Netw. Serv. Manage. 20(2), 1898–1912 (2023)

    Article  Google Scholar 

  2. Sodagar, I.: The MPEG-DASH standard for multimedia streaming over the internet. IEEE Multimed. 18(4), 62–67 (2011)

    Article  Google Scholar 

  3. Qin, Y., et al.: ABR streaming of VBR-encoded videos: characterization, challenges, and solutions. In: Proceedings of ACM CoNEXT, pp. 366–378 (2018)

    Google Scholar 

  4. Qin, Y., Hao, S., Pattipati, K.R., Qian, F.: Quality-aware strategies for optimizing ABR video streaming QoE and reducing data usage. In: Proceedings of ACM MMSys, pp. 189–200 (2019)

    Google Scholar 

  5. Li, W., Huang, J., Wang, S., Wu, C., Liu, S., Wang, J.: An apprenticeship learning approach for adaptive video streaming based on chunk quality and user preference. IEEE Trans. Multimed. 25, 2488–2502 (2023)

    Article  Google Scholar 

  6. Yin, X., Jindal, A., Sekar, V., Sinopoli, B.: A control-theoretic approach for dynamic adaptive video streaming over HTTP. In: Proceedings of ACM SIGCOMM, pp. 325–338 (2015)

    Google Scholar 

  7. Yadav, P.K., Shafiei, A., Ooi, W.T.: QUETRA: a queuing theory approach to DASH rate adaptation. In: Proceedings of ACM MM (2017)

    Google Scholar 

  8. Qin, Y., Jin, R., Hao, S., Pattipati, K.R., Qian, F.: A control theoretic approach to ABR video streaming: a fresh look at PID-based rate adaptation. In: Proceedings of IEEE INFOCOM (2017)

    Google Scholar 

  9. Wang, B., Ren, F.: Towards forward-looking online bitrate adaptation for DASH. In: Proceedings of ACM MM (2017)

    Google Scholar 

  10. Mao, H., Netravail, R., Alizadeh, M.: Neural adaptive video streaming with pensieve. In: Proceedings of ACM SIGCOMM, pp. 197–210 (2017)

    Google Scholar 

  11. Huang, T., et al.: Quality-aware neural adaptive video streaming with lifelong imitation learning. IEEE J. Sel. Areas Commun. 38(10), 2324–2342 (2020)

    Article  Google Scholar 

  12. Kan, N., Li, C., Yang, C., Dai, W., Zou, J., Xiong, H.: Uncertainty-aware robust adaptive video streaming with bayesian neural network and model predictive control. In: Proceedings of ACM NOSSDAV, pp. 17–24 (2021)

    Google Scholar 

  13. Yan, F.Y., et al.: Learning in situ: a randomized experiment in video streaming. In: Proceedings of USENIX NSDI, pp. 495–511 (2020)

    Google Scholar 

  14. Yuan, D., Zhang, Y., Zhang, W., Liu, X., Du, H., Zheng, Q.: PRIOR: deep reinforced adaptive video streaming with attention-based throughput prediction. In: Proceedings of ACM NOSSDAV (2022)

    Google Scholar 

  15. Zuo, X., Yang, J., Wang, M., Cui, Y.: Adaptive bitrate with user-level QoE preference for video streaming. In: Proceedings of IEEE INFOCOM, pp. 1279–1288 (2022)

    Google Scholar 

  16. Huang, T., Zhang, R., Sun, L.: Zwei: a self-play reinforcement learning framework for video transmission services. IEEE Trans. Multimed. 24(1), 1350–1365 (2022)

    Article  Google Scholar 

  17. Huang, T., Yao, X., Wu, C., Zhang, R.X., Pang, Z., Sun, L.: Tiyuntsong: a self-play reinforcement learning approach for ABR video streaming. In: Proceedings of IEEE ICME, pp. 1678–1683 (2019)

    Google Scholar 

  18. Huang, T., Zhou, C., Zhang, R.X., Wu, C., Yao, X., Sun, L.: Stick: a harmonious fusion of buffer-based and learning-based approach for adaptive streaming. In: Proceedings of IEEE INFOCOM, pp. 1967–1976 (2020)

    Google Scholar 

  19. Li, W., Huang, J., Lyu, W., Guo, B., Jiang, W., Wang, J.: RAV: learning-based adaptive streaming to coordinate the audio and video bitrate selections. IEEE Trans. Multimed. (2022). https://doi.org/10.1109/TMM.2022.3198013

  20. Li, W., Huang, J., Liang, Y., Liu, J., Gao, F.: Synthesizing audio and video bitrate selections via learning from actual requirements. In: Proceedings of IEEE ICME (2022)

    Google Scholar 

  21. Li, W., Huang, J., Liu, J., Jiang, W., Wang, J.: Learning audio and video bitrate selection strategies via explicit requirements. IEEE Trans. Mob. Comput. (2023). https://doi.org/10.1109/TMC.2023.3265380

  22. Huang, T., Zhou, C., Zhang, R., Wu, C., Sun, L.: Learning tailored adaptive bitrate algorithms to heterogeneous network conditions: a domain-specific priors and meta-reinforcement learning approach. IEEE J. Sel. Areas Commun. 40(8), 2485–2503 (2022)

    Article  Google Scholar 

  23. Qiao, C., Li, G., Ma, Q., Wang, J., Liu, Y.: Trace-driven optimization on bitrate adaptation for mobile video streaming. IEEE Trans. Mob. Comput. 21(6), 2243–2256 (2022)

    Article  Google Scholar 

  24. Lipa, D.: Physical (Official Music Video) (2020). https://www.youtube.com/watch?v=9HDEHj2yzew

  25. Xiph. Org, Xiph.org Video Test Media (2016). https://media.xiph.org/video/derf/

  26. Liu, C., Bouazizi, I., Gabbouj, M.: Rate adaptation for adaptive HTTP streaming. In: Proceedings of ACM MMSys, 2011, pp. 169–174 (2011)

    Google Scholar 

  27. ITU-T P. 910, Subjective Video Quality Assessment Methods for Multimedia Applications (2008)

    Google Scholar 

  28. Huang, T., Zhang, R., Zhou, C., Sun, L.: QARC: video quality aware rate control for real-time video streaming based on deep reinforcement learning. In: Proceedings of ACM MM, pp. 1208–1216 (2018)

    Google Scholar 

  29. Huang, J., et al.: Opportunistic transmission for video streaming over wild internet. ACM Trans. Multimed. Comput. Commun. Appl. 18(140), 1–22 (2023)

    Google Scholar 

  30. Jiang, J., Sekar, V., Zhang, H.: Improving fairness, efficiency, and stability in HTTP-based adaptive video streaming with FESTIVE. In: Proceedings of ACM CoNEXT (2012)

    Google Scholar 

  31. Huang, T.Y., Johari, R., McKeown, N., Trunnell, M., Watson, M.: A buffer-based approach to rate adaptation: evidence from a large video streaming service. In: Proceedings of ACM SIGCOMM, pp. 187–198 (2014)

    Google Scholar 

  32. Spiteri, K., Urgaonkar, R., Sitaraman, R.K.: BOLA: near-optimal bitrate adaptation for online videos. In: Proceedings of IEEE INFOCOM, pp. 1–9 (2016)

    Google Scholar 

  33. Li, Z., Aaron, A., Katsavounidis, I., Moorthy, A., Manohara, M.: Toward a practical perceptual video quality metric. https://techblog.netflix.com/2016/06/toward-practical-perceptual-video.html

  34. Huang, T.Y., et al.: Hindsight: evaluate video bitrate adaptation at scale. In: Proceedings of ACM MMSys, pp. 86–97 (2019)

    Google Scholar 

  35. Bai, Y., Jin, C., Yu, T.: Near-optimal reinforcement learning with self-play. In: Proceedings of NeurIPS, pp. 1–12 (2020)

    Google Scholar 

  36. Ye, D., et al.: Mastering intricate Control in MOBA Games with Deep Reinforcement Learning (2019). arXiv preprint arXiv:1912.09729

  37. Abadi, M., Barham, P., Chen, J., et al.: TensorFlow: a system for large-scale machine learning. In: Proceedings of USENIX OSDI, pp. 265–283 (2016)

    Google Scholar 

  38. Yuan, T.: TF.Learn: TensorFlow’s High-level Module for Distributed Machine Learning (2017). https://tflearn.org/

  39. Riiser, H., Vigmostad, P., Griwodz, C., Halvorsen, P.: Commute path bandwidth traces from 3G networks: analysis and applications. In: Proceedings of ACM MMSys, pp. 114–118 (2013)

    Google Scholar 

  40. Federal Communications Commission, Raw Data - Measuring Broadband America (2016). https://www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-2016

  41. Coulom, R.: Whole-history rating: a bayesian rating system for players of time-varying strength. In: Proceedings of Springer International Conference on Computers and Games (2008)

    Google Scholar 

  42. Elo Rating System. https://en.wikipedia.org/wiki/Elo_rating_system

  43. Li, W., Huang, J., Wang, S., Liu, S., Wang, J.: DAVS: dynamic-chunk quality aware adaptive video streaming using apprenticeship learning. In: Proceedings of IEEE GLOBECOM, pp. 1–6 (2020)

    Google Scholar 

  44. The ACM Multimedia 2018 Live Video Streaming Grand Challenge, LTE/WiFi Dataset (2018). https://www.aitrans.online/competition_detail/competition_id=2

  45. Akhtar, Z., et al.: Oboe: auto-tuning video ABR algorithms to network conditions. In: Proceedings of ACM SIGCOMM, pp. 44–58 (2018)

    Google Scholar 

  46. Dash.js (2017). https://github.com/Dash-Industry-Forum/dash.js

  47. Qiao, C., Wang, J., Liu, Y.: Beyond QoE: diversity adaption in video streaming at the edge. IEEE/ACM Trans. Networking 29(1), 289–302 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingling Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, W. et al. (2024). CAST: An Intricate-Scene Aware Adaptive Bitrate Approach for Video Streaming via Parallel Training. In: Tari, Z., Li, K., Wu, H. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2023. Lecture Notes in Computer Science, vol 14490. Springer, Singapore. https://doi.org/10.1007/978-981-97-0859-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0859-8_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0858-1

  • Online ISBN: 978-981-97-0859-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics