Skip to main content

AOPT-FL: A Communication-Efficient Federated Learning Method with Clusterd and Sparsification

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14493))

  • 101 Accesses

Abstract

Federated Learning is a distributed machine learning technique that allows multiple devices to learn a shared model collaboratively without exchanging their data. It can be used to improve model accuracy while preserving user privacy. But traditional Federated Learning incurs significant communication overhead and does not perform well when the training data are not independent and identically distribute (Non-IID). Therefore, a Federated Learning algorithm based on adaptive Top-k sparsification and OPTICS method is proposed, which solves the problem that Federated Learning has low accuracy and high communication overhead on Non-IID data. Compared to existing Federated Learning algorithm, our algorithm has improved the accuracy of the model and reduced communication overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  2. Sattler, F., Wiedemann, S., Müller, K.R., Samek, W.: Robust and communication-efficient Federated Learning from non-IID data. IEEE Trans. Neural Netw. Learn. Syst. 31(9), 3400–3413 (2019)

    Article  Google Scholar 

  3. Chaodong, Y., Jian, C., Geming, X.: Coordinated control of intelligent fuzzy traffic signal based on edge computing distribution. Sensors 5953 (2022)

    Google Scholar 

  4. Sattler, F., Wiedemann, S., Müller, K.R., Samek, W.: Sparse binary compression: towards distributed deep learning with minimal communication. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

    Google Scholar 

  5. Li, X., Huang, K., Yang, W., Wang, S., Zhang, Z.: On the convergence of FedAvg on non-IID data. arXiv preprint arXiv:1907.02189 (2019)

  6. Hsieh, K., Phanishayee, A., Mutlu, O., Gibbons, P.: The non-IID data quagmire of decentralized machine learning. In: International Conference on Machine Learning, pp. 4387–4398. PMLR (2020)

    Google Scholar 

  7. Agrawal, S., Sarkar, S., Alazab, M., Maddikunta, P.K.R., Gadekallu, T.R., Pham, Q.V., et al.: Genetic CFL: hyperparameter optimization in clustered federated learning. Comput. Intell. Neurosci. 2021 (2021)

    Google Scholar 

  8. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-IID data (2018)

    Google Scholar 

  9. Ström, N.: Scalable distributed DNN training using commodity GPU cloud computing (2015)

    Google Scholar 

  10. Rice, R., Plaunt, J.: Adaptive variable-length coding for efficient compression of spacecraft television data. IEEE Trans. Commun. Technol. 19(6), 889–897 (1971)

    Article  Google Scholar 

  11. Aji, A.F., Heafield, K.: Sparse communication for distributed gradient descent. arXiv preprint arXiv:1704.05021 (2017)

  12. Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., Anandkumar, A.: signSGD: compressed optimisation for non-convex problems. In: International Conference on Machine Learning, pp. 560–569. PMLR (2018)

    Google Scholar 

  13. Ghosh, A., Hong, J., Yin, D., Ramchandran, K.: Robust federated learning in a heterogeneous environment (2019)

    Google Scholar 

  14. Kim, Y., Hakim, E.A., Haraldson, J., Eriksson, H., Silva, J., Fischione, C.: Dynamic clustering in federated learning (2021)

    Google Scholar 

  15. Cheng, X., Gang, L., Pramod, K., V.: Federated learning with soft clustering. IEEE Internet Things J. 7773–7782 (2022)

    Google Scholar 

  16. Khan, K., Rehman, S.U., Aziz, K., Fong, S., Sarasvady, S.: Dbscan: past, present and future. In: The Fifth International Conference on the Applications of Digital Information and Web Technologies (ICADIWT 2014), pp. 232–238. IEEE (2014)

    Google Scholar 

  17. Deutsch, P.: RFC 1951: Deflate compressed data format specification version 1.3(1996)

    Google Scholar 

  18. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 23(3), 337–343 (1977)

    Article  MathSciNet  Google Scholar 

  19. Bryant, A., Cios, K.: RNN-DBSCAN: a density-based clustering algorithm using reverse nearest neighbor density estimates. IEEE Trans. Knowl. Data Eng. 30(6), 1109–1121 (2017)

    Article  Google Scholar 

  20. Ankerst, M., Breunig, M., Kriegel, H.P., Sander, J.: Optics: ordering points to identify the clustering structure. ACM SIGMOD Rec. 49–60 (1999)

    Google Scholar 

  21. Arisdakessian, S., Wahab, O.A., Mourad, A., Otrok, H.: Towards instant clustering approach for federated learning client selection. In: 2023 International Conference on Computing, Networking and Communications (ICNC), pp. 409–413. IEEE (2023)

    Google Scholar 

  22. Geming, X., Jian, C., Chaodong, Y., Jun, M.: Poisoning attacks in federated learning: a survey. IEEE Access 1 (2023)

    Google Scholar 

  23. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1

    Chapter  Google Scholar 

  24. Liu, R., Cao, Y., Yoshikawa, M., Chen, H.: FedSel: federated SGD under local differential privacy with top-k dimension selection. In: Nah, Y., Cui, B., Lee, S.W., Yu, J.X., Moon, Y.S., Whang, S.E. (eds.) DASFAA 2020. LNCS, vol. 12112, pp. 485–501. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59410-7_33

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geming Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, D., Xia, G., Liu, Y. (2024). AOPT-FL: A Communication-Efficient Federated Learning Method with Clusterd and Sparsification. In: Tari, Z., Li, K., Wu, H. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2023. Lecture Notes in Computer Science, vol 14493. Springer, Singapore. https://doi.org/10.1007/978-981-97-0862-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0862-8_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0861-1

  • Online ISBN: 978-981-97-0862-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics