Skip to main content

A Collaborative Migration Algorithm for Edge Services Based on Evolutionary Reinforcement Learning

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14493))

  • 82 Accesses

Abstract

Multi-access edge computing (MEC) enables users’ smart devices to execute computing-intensive and delay-sensitive applications by sinking computing power to edge servers, thereby meeting users’ quality of service requirements. However, due to the limited computing and storage resources on the edge server, it is impossible to migrate all user service requests to the edge server. At the same time, due to the heterogeneity of resources among edge servers and the uneven distribution of user service requirements, it can easily lead to unbalanced loads among edge servers in the edge system. Consequently, this results in low resource utilization and a decreased success rate of requests. Therefore, this paper builds a collaborative edge service migration model based on software-defined networking (SDN), which supports cloud computing centers and edge servers to collaboratively process user requests and service request migration between edge servers. Taking minimizing the response delay of user requests and the weighted sum of device energy consumption as the optimization goal and transforming the optimization problem into a Markov process. A collaborative edge service migration algorithm based on evolutionary reinforcement learning (ERL) is proposed to solve the service Migration strategies and resource allocation decisions. Experimental results show that the proposed algorithm (DEDRL) performs better than other algorithms in response delay, energy consumption and request success rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Du, J., Yu, F.R., Lu, G., Wang, J., Jiang, J., Chu, X.: MEC-assisted immersive VR video streaming over terahertz wireless networks: a deep reinforcement learning approach. IEEE Internet Things 7(10), 9517–9529 (2020)

    Article  Google Scholar 

  2. Deng, S., Xiang, Z., Taheri, J., et al.: Optimal application deployment in resource constrained distributed edges. IEEE Trans. Mob. Comput. 20(5), 1907–1923 (2020)

    Article  Google Scholar 

  3. Dai, B., Xu, F., Cao, Y., et al.: Hybrid sensing data fusion of cooperative perception for autonomous driving with augmented vehicular reality. IEEE Syst. J. 15(1), 1413–1422 (2020)

    Article  Google Scholar 

  4. Shi, W., Cao, J., Zhang, Q., et al.: Edge computing: vision and challenges. Internet Things J. 3(5), 637–646 (2016)

    Article  Google Scholar 

  5. Zhao, J., Li, Q., Gong, Y., Zhang, K.: Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks. Trans. Veh. Technol. 68(8), 7944–7956 (2019)

    Article  Google Scholar 

  6. Wang, Y., Lang, P., Tian, D., et al.: A game-based computation offloading method in vehicular multiaccess edge computing networks. IEEE Internet Things J. 7(6), 4987–4996 (2020)

    Article  Google Scholar 

  7. Lyu, X., Ni, W., Tian, H., et al.: Optimal schedule of mobile edge computing for internet of things using partial information. IEEE J. Sel. Areas Commun. 35(11), 2606–2615 (2017)

    Article  Google Scholar 

  8. Basu, D., Wang, X., Hong, Y., et al.: Learn-as-you-go with Megh: efficient live migration of virtual machines. IEEE Trans. Parallel Distrib. Syst. 30(8), 1786–1801 (2019)

    Article  Google Scholar 

  9. Alameddine, H.A., Sharafeddine, S., Sebbah, S., et al.: Dynamic task offloading and scheduling for low-latency IoT services in multi-access edge computing. IEEE J. Sel. Areas Commun. 37(3), 668–682 (2019)

    Article  Google Scholar 

  10. Lim, W.Y.B., Luong, N.C., Hoang, D.T., et al.: Federated learning in mobile edge networks: a comprehensive survey. IEEE Commun. Surv. Tutor. 22(3), 2031–2063 (2020)

    Article  Google Scholar 

  11. Wang, S., Zhang, X., Yan, Z., Wang, W., et al.: Cooperative edge computing with sleep control under nonuniform traffic in mobile edge networks. IEEE Internet Things J. 6(3), 4295–4306 (2019)

    Article  Google Scholar 

  12. Zhang, G., Zhang, W., Cao, Y., et al.: Energy-delay tradeoff for dynamic offloading in mobile-edge computing system with energy harvesting devices. IEEE Trans. Industr. Inf. 14(10), 4642–4655 (2018)

    Article  Google Scholar 

  13. Cao, X., Wang, F., Xu, J., et al.: Joint computation and communication cooperation for energy-efficient mobile edge computing. IEEE Internet Things J. 6(3), 4188–4200 (2018)

    Article  Google Scholar 

  14. Zhang, H., Guo, J., Yang, L., et al.: Computation offloading considering fronthaul and backhaul in small-cell networks integrated with MEC. In: 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 115–120. IEEE (2017)

    Google Scholar 

  15. Yin, S., Ke, P., Tao, L.: An improved genetic algorithm for task scheduling in cloud computing. In: 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 526–530. IEEE (2018)

    Google Scholar 

  16. Liu, S., Yin, Y.: Task scheduling in cloud computing based on improved discrete particle swarm optimization. In: IEEE 2nd International Conference on Information Systems and Computer Aided Education (ICISCAE), Dalian, China, pp. 594–597 (2019)

    Google Scholar 

  17. Masadeh, R., Alsharman, N., Sharieh, A., et al.: Task scheduling on cloud computing based on sea lion optimization algorithm. Int. J. Web Inf. Syst. 17(2), 99–116 (2021)

    Article  Google Scholar 

  18. Tran-Dang, H., Kim, D.S.: FRATO: fog resource based adaptive task offloading for delay-minimizing IoT service provisioning. IEEE Trans. Parallel Distrib. Syst. 32(10), 2491–2508 (2021)

    Article  Google Scholar 

  19. Tang, L., He, S.: Multi-user computation offloading in mobile edge computing: a behavioral perspective. IEEE Netw. 32(1), 48–53 (2018)

    Article  Google Scholar 

  20. Yi, C., Cai, J., Su, Z.: A multi-user mobile computation offloading and transmission scheduling mechanism for delay-sensitive applications. IEEE Trans. Mob. Comput. 19(1), 29–43 (2019)

    Article  Google Scholar 

  21. Wang, H., Xu, H., Huang, H., et al.: Robust task offloading in dynamic edge computing. IEEE Trans. Mob. Comput. 22(1), 500–514 (2021)

    Article  Google Scholar 

  22. Qiu, X., Liu, L., Chen, W., et al.: Online deep reinforcement learning for computation offloading in blockchain-empowered mobile edge computing. IEEE Trans. Veh. Technol. 68(8), 8050–8062 (2019)

    Article  Google Scholar 

  23. Ren, J., Hou, T., Wang, H., et al.: Collaborative task offloading and resource scheduling framework for heterogeneous edge computing. Wirel. Netw. 1–13 (2021)

    Google Scholar 

  24. Li, Z., Zhou, X., Li, T., Liu, Y.: An optimal-transport-based reinforcement learning approach for computation offloading. In: 2021 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6. IEEE (2021)

    Google Scholar 

  25. Xiao, M., Shroff, N.B., Chong, E.K.P.: A utility-based power-control scheme in wireless cellular systems. IEEE/ACM Trans. Netw. 11(2), 210–221 (2003)

    Article  Google Scholar 

  26. Wang, Y., Fang, W., Ding, Y., et al.: Computation offloading optimization for UAV-assisted mobile edge computing: a deep deterministic policy gradient approach. Wirel. Netw. 27(4), 2991–3006 (2021)

    Article  Google Scholar 

  27. Chen, N., Zhang, S., Qian, Z., et al.: When learning joins edge: real-time proportional computation offloading via deep reinforcement learning. In: 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), pp. 414–421. IEEE (2019)

    Google Scholar 

Download references

Acknowledgement

This work is supported by Liaoning Province Applied Basic Research Program Project (Grant No. 2023JH2/101300195).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuguo Zhang or Zhiying Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zuo, Y., Zhang, X., Zhang, B., Cao, Z. (2024). A Collaborative Migration Algorithm for Edge Services Based on Evolutionary Reinforcement Learning. In: Tari, Z., Li, K., Wu, H. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2023. Lecture Notes in Computer Science, vol 14493. Springer, Singapore. https://doi.org/10.1007/978-981-97-0862-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0862-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0861-1

  • Online ISBN: 978-981-97-0862-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics