Abstract
Accountable ring signatures close the gap between ring signatures and group signatures. They support a designated opener who can identify signers when necessary while allowing for the most excellent possible flexibility in selecting the ring. Accountable ring signatures were first informally defined by Xu and Yung at CARDIS 2004. They present a compiler that transforms a traditional ring signature scheme into an accountable one by using a trusted model on the smart cards. At ESORICS 2015, Bootle et al. introduced a formal security model for accountable ring signatures. In addition, they also present a generic construction for accountable ring signatures in the random oracle model. In terms of the security proof model, the plain model is preferable since it requires neither any assumptions that sometimes do not exist in practice nor any trusted setup assumptions. Until now, there has been no construction of accountable ring signatures in the plain model, even with a linear signature size. In this paper, we present the first generic construction of accountable ring signature schemes that have the logarithmic signature size and are secure in the plain model using standard assumptions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
The quantum random oracle model (QROM) was developed recently. This model also necessitates the existence of a quantum oracle that all parties involved in a scheme consult. Both the output and input of the QROM are represented by qubit.
References
Backes, M., Döttling, N., Hanzlik, L., Kluczniak, K., Schneider, J.: Ring signatures: logarithmic-size, no setup—from standard assumptions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 281–311. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_10
Badrinarayanan, S., Fernando, R., Jain, A., Khurana, D., Sahai, A.: Statistical ZAP arguments. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 642–667. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_22
Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and constructions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_4
Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short accountable ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6_13
Branco, P., Döttling, N., Wohnig, S.: Universal ring signatures in the standard model. In: Advances in Cryptology-ASIACRYPT 2022: 28th International Conference on the Theory and Application of Cryptology and Information Security, Taipei, Taiwan, 5–9 December 2022, Proceedings, Part IV, pp. 249–278. Springer (2023). https://doi.org/10.1007/978-3-031-22972-5_9
Bultel, X., Fraser, A., Quaglia, E.A.: Improving the efficiency of report and trace ring signatures. In: International Symposium on Stabilizing, Safety, and Security of Distributed Systems, pp. 130–145. Springer (2022). https://doi.org/10.1007/978-3-031-21017-4_9
Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM (JACM) 51(4), 557–594 (2004)
Chatterjee, R., et al.: Compact ring signatures from learning with errors. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 282–312. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_11
Chaum, D., Van Heyst, E.: Group signatures. In: Advances in Cryptology-EUROCRYPT 1991: Workshop on the Theory and Application of Cryptographic Techniques Brighton, UK, 8–11 April 1991 Proceedings 10, pp. 257–265. Springer (1991). https://doi.org/10.1007/978-1-4419-5906-5_20
ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)
Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_6
Okamoto, T., Pietrzak, K., Waters, B., Wichs, D.: New realizations of somewhere statistically binding hashing and positional accumulators. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 121–145. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_6
Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32
Xu, S., Yung, M.: Accountable ring signatures: a smart card approach. In: Quisquater, J.-J., Paradinas, P., Deswarte, Y., El Kalam, A.A. (eds.) CARDIS 2004. IIFIP, vol. 153, pp. 271–286. Springer, Boston, MA (2004). https://doi.org/10.1007/1-4020-8147-2_18
Acknowledgement
We are grateful to the Inscrypt 2023 anonymous reviewers for their helpful comments. This work is partially supported by the Australian Research Council Linkage Project LP190100984.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Khuc, T.X., Susilo, W., Duong, D.H., Guo, F., Fukushima, K., Kiyomoto, S. (2024). Compact Accountable Ring Signatures in the Plain Model. In: Ge, C., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2023. Lecture Notes in Computer Science, vol 14526. Springer, Singapore. https://doi.org/10.1007/978-981-97-0942-7_2
Download citation
DOI: https://doi.org/10.1007/978-981-97-0942-7_2
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-0941-0
Online ISBN: 978-981-97-0942-7
eBook Packages: Computer ScienceComputer Science (R0)