Abstract
Ring signatures allow a ring member to produce signatures on behalf of all ring users but remain anonymous. At PKC 2022, Chatterjee et al. defined post-quantum ring signatures with post-quantum anonymity and post-quantum blind-unforgeability. Assuming the hardness of the learning with errors problem, they proposed a generic construction that transforms any blind-unforgeable (BU) secure signature into a post-quantum ring signature in the standard model. However, the signature size grows linearly to the number of ring members.
In this paper, we revisit the construction of Chatterjee et al. and present a compiler converting any BU secure signature into a compact (i.e., the signature size is logarithmically (or lower) dependent on the ring size) post-quantum ring signature in the standard model. Additionally, inspired by the work of Boneh et al. at CRYPTO 2013, we show how to transform any existentially unforgeable under a chosen message attack (EUF-CMA) secure signature into a BU secure signature. Hence, through our work, one can easily build a compact post-quantum ring signature in the standard model directly from any EUF-CMA secure signature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
We include verification key \((vk, pk, \rho )\) in SK then \(\textsf{Sign}\) procedure can identify which verification key corresponding to the signing key.
References
Alagic, G., Majenz, C., Russell, A., Song, F.: Quantum-Access-Secure Message Authentication via Blind-Unforgeability. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 788–817. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_27
Backes, M., Döttling, N., Hanzlik, L., Kluczniak, K., Schneider, J.: Ring signatures: Logarithmic-size, no setup–from standard assumptions. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2019. pp, pp. 281–311. Springer International Publishing, Cham (2019)
Boneh, D., et al.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3
Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_21
Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27
Chatterjee, R., Chung, K.M., Liang, X., Malavolta, G.: A note on the post-quantum security of (ring) signatures. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) Public-Key Cryptography - PKC 2022. pp, pp. 407–436. Springer International Publishing, Cham (2022)
Chatterjee, R., et al.: Compact ring signatures from learning with errors. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology - CRYPTO 2021. pp, pp. 282–312. Springer International Publishing, Cham (2021)
Barapatre, P., Pandu Rangan, C.: Anonymous identity-based identification scheme in Ad-Hoc groups without pairings. In: Gierlichs, B., Guilley, S., Mukhopadhyay, D. (eds.) SPACE 2013. LNCS, vol. 8204, pp. 130–146. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41224-0_10
Don, J., Fehr, S., Majenz, C.: The measure-and-reprogram technique 2.0: multi-round fiat-shamir and more. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 602–631. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_21
Garg, S., Yuen, H., Zhandry, M.: New security notions and feasibility results for authentication of quantum data. In: Katz, J., Shacham, H. (eds.) Advances in Cryptology - CRYPTO 2017, pp. 342–371. Springer International Publishing, Cham (2017)
Don, J., Fehr, S., Majenz, C.: The Measure-and-Reprogram Technique 2.0: Multi-round Fiat-Shamir and More. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 602–631. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_21
Groth, J., Kohlweiss, M.: One-Out-of-Many Proofs: Or how to leak a secret and spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_9
Katz, J.:Digital signatures: Background and definitions. In Digital Signatures, pp. 3–33. Springer, 2010
Krawczyk, H. and Rabin, T.: Chameleon hashing and signatures. 1998
Liu, Q., Zhandry, M.: Revisiting post-quantum fiat-shamir. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology - CRYPTO 2019. pp, pp. 326–355. Springer International Publishing, Cham (2019)
Nguyen, T.N., et al.: Efficient unique ring signatures from lattices. In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds.) Computer Security - ESORICS 2022. pp, pp. 447–466. Springer Nature Switzerland, Cham (2022)
Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32
Ta, A.T., et al.: Efficient unique ring signature for blockchain privacy protection. In: Baek, J., Ruj, S. (eds.) Information Security and Privacy, pp. 391–407. Springer, Cham (2021)
Yuen, T.H., Esgin, M.F., Liu, J.K., Au, M.H., Ding, Z.: Dualring: generic construction of ring signatures with efficient instantiations. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology - CRYPTO 2021, pp. 251–281. Springer International Publishing, Cham (2021)
Zhandry, M.: How to construct quantum random functions. In: 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, pp. 679–687, 2012
Zhandry, M.: Secure identity-based encryption in the quantum random oracle model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_44
Acknowledgement
We are grateful to the Inscrypt 2023 anonymous reviewers for their helpful comments. This work is partially supported by the Australian Research Council Linkage Project LP190100984. Dung Hoang Duong is partially supported by AEGiS 2023 grant from the University of Wollongong.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Nguyen, T.N., Susilo, W., Duong, D.H., Guo, F., Fukushima, K., Kiyomoto, S. (2024). Compact Ring Signatures with Post-Quantum Security in Standard Model. In: Ge, C., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2023. Lecture Notes in Computer Science, vol 14526. Springer, Singapore. https://doi.org/10.1007/978-981-97-0942-7_4
Download citation
DOI: https://doi.org/10.1007/978-981-97-0942-7_4
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-0941-0
Online ISBN: 978-981-97-0942-7
eBook Packages: Computer ScienceComputer Science (R0)