Abstract
Homomorphic evaluation of hash functions offers a solution to the challenge of data integrity authentication in the context of homomorphic encryption. The earliest attempt to achieve homomorphic evaluation of SHA-256 hash function was proposed by Mella et al. [15] based on the BGV scheme. Unfortunately, their implementation faced significant limitations due to the exceedingly high multiplicative depth, rendering it impractical. Recently, a homomorphic implementation of SHA-256 based on the TFHE scheme [1] brings it from theory to reality, however, its current efficiency remains insufficient.
In this paper, we revisit the homomorphic evaluation of the SHA-256 hash function based on TFHE, further reducing the reliance on gate bootstrapping and enhancing evaluation latency. Specifically, we primarily utilize ternary gates to reduce the number of gate bootstrappings required for logic functions in message expansion and addition of modulo \(2^{32}\) in iterative compression. Furthermore, we demonstrate that our optimization techniques are applicable to the Chinese commercial cryptographic hash SM3. Finally, we give specific comparative implementations based on the TFHE-rs library. Experiments demonstrate that our optimization techniques lead to an improvement of approximately 35%–50% compared to the state-of-the-art under different cores.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Homomorphic evaluation of SHA-256. https://github.com/zama-ai/tfhe-rs/tree/main/tfhe/examples/sha256_bool
Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_17
Bendoukha, A., Stan, O., Sirdey, R., Quero, N., de Souza, L.F.: Practical homomorphic evaluation of block-cipher-based hash functions with applications. In: Jourdan, GV., Mounier, L., Adams, C., Sèdes, F., Garcia-Alfaro, J. (eds.) Foundations and Practice of Security - 15th International Symposium, FPS 2022. LNCS, vol. 13877, pp. 88–103. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-30122-3_6
Bonte, C., Iliashenko, I., Park, J., Pereira, H.V.L., Smart, N.P.: FINAL: faster FHE instantiated with NTRU and LWE. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. LNCS, vol. 13792, pp. 188–215. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22966-4_7
Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_50
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. In: Innovations in Theoretical Computer Science 2012, pp. 309–325. ACM (2012)
Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 360–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_14
Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15
Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomorphic encryption over the torus. J. Cryptol. 33(1), 34–91 (2020)
Doröz, Y., Hu, Y., Sunar, B.: Homomorphic AES evaluation using the modified LTV scheme. Des. Codes Cryptogr. 80(2), 333–358 (2016)
Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_24
Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, Report 2012/144. https://eprint.iacr.org/2012/144
Gentry, C.: A Fully Homomorphic Encryption Scheme. Stanford University (2009)
Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 318–335. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-6_20
Mella, S., Susella, R.: On the homomorphic computation of symmetric cryptographic primitives. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 28–44. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45239-0_3
Acknowledgement
We thank the anonymous INSCRYPT 2023 reviewers for their helpful comments. This work was supported by the Huawei Technologies Co., Ltd. and CAS Project for Young Scientists in Basic Research Grant No. YSBR-035.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wei, B., Lu, X. (2024). Improved Homomorphic Evaluation for Hash Function Based on TFHE. In: Ge, C., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2023. Lecture Notes in Computer Science, vol 14527. Springer, Singapore. https://doi.org/10.1007/978-981-97-0945-8_25
Download citation
DOI: https://doi.org/10.1007/978-981-97-0945-8_25
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-0944-1
Online ISBN: 978-981-97-0945-8
eBook Packages: Computer ScienceComputer Science (R0)