Skip to main content

Improved Homomorphic Evaluation for Hash Function Based on TFHE

  • Conference paper
  • First Online:
Information Security and Cryptology (Inscrypt 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14527))

Included in the following conference series:

Abstract

Homomorphic evaluation of hash functions offers a solution to the challenge of data integrity authentication in the context of homomorphic encryption. The earliest attempt to achieve homomorphic evaluation of SHA-256 hash function was proposed by Mella et al. [15] based on the BGV scheme. Unfortunately, their implementation faced significant limitations due to the exceedingly high multiplicative depth, rendering it impractical. Recently, a homomorphic implementation of SHA-256 based on the TFHE scheme [1] brings it from theory to reality, however, its current efficiency remains insufficient.

In this paper, we revisit the homomorphic evaluation of the SHA-256 hash function based on TFHE, further reducing the reliance on gate bootstrapping and enhancing evaluation latency. Specifically, we primarily utilize ternary gates to reduce the number of gate bootstrappings required for logic functions in message expansion and addition of modulo \(2^{32}\) in iterative compression. Furthermore, we demonstrate that our optimization techniques are applicable to the Chinese commercial cryptographic hash SM3. Finally, we give specific comparative implementations based on the TFHE-rs library. Experiments demonstrate that our optimization techniques lead to an improvement of approximately 35%–50% compared to the state-of-the-art under different cores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/zama-ai/tfhe-rs.

References

  1. Homomorphic evaluation of SHA-256. https://github.com/zama-ai/tfhe-rs/tree/main/tfhe/examples/sha256_bool

  2. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_17

    Chapter  Google Scholar 

  3. Bendoukha, A., Stan, O., Sirdey, R., Quero, N., de Souza, L.F.: Practical homomorphic evaluation of block-cipher-based hash functions with applications. In: Jourdan, GV., Mounier, L., Adams, C., Sèdes, F., Garcia-Alfaro, J. (eds.) Foundations and Practice of Security - 15th International Symposium, FPS 2022. LNCS, vol. 13877, pp. 88–103. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-30122-3_6

  4. Bonte, C., Iliashenko, I., Park, J., Pereira, H.V.L., Smart, N.P.: FINAL: faster FHE instantiated with NTRU and LWE. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. LNCS, vol. 13792, pp. 188–215. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22966-4_7

  5. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_50

    Chapter  MATH  Google Scholar 

  6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. In: Innovations in Theoretical Computer Science 2012, pp. 309–325. ACM (2012)

    Google Scholar 

  7. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 360–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_14

    Chapter  MATH  Google Scholar 

  8. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15

    Chapter  MATH  Google Scholar 

  9. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomorphic encryption over the torus. J. Cryptol. 33(1), 34–91 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Doröz, Y., Hu, Y., Sunar, B.: Homomorphic AES evaluation using the modified LTV scheme. Des. Codes Cryptogr. 80(2), 333–358 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_24

    Chapter  MATH  Google Scholar 

  12. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, Report 2012/144. https://eprint.iacr.org/2012/144

  13. Gentry, C.: A Fully Homomorphic Encryption Scheme. Stanford University (2009)

    Google Scholar 

  14. Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 318–335. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-6_20

    Chapter  MATH  Google Scholar 

  15. Mella, S., Susella, R.: On the homomorphic computation of symmetric cryptographic primitives. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 28–44. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45239-0_3

    Chapter  MATH  Google Scholar 

Download references

Acknowledgement

We thank the anonymous INSCRYPT 2023 reviewers for their helpful comments. This work was supported by the Huawei Technologies Co., Ltd. and CAS Project for Young Scientists in Basic Research Grant No. YSBR-035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianhui Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, B., Lu, X. (2024). Improved Homomorphic Evaluation for Hash Function Based on TFHE. In: Ge, C., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2023. Lecture Notes in Computer Science, vol 14527. Springer, Singapore. https://doi.org/10.1007/978-981-97-0945-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0945-8_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0944-1

  • Online ISBN: 978-981-97-0945-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics