Skip to main content

Side-Channel Analysis on Lattice-Based KEM Using Multi-feature Recognition - The Case Study of Kyber

  • Conference paper
  • First Online:
Information Security and Cryptology – ICISC 2023 (ICISC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14561))

Included in the following conference series:

  • 64 Accesses

Abstract

Kyber, selected as the next-generation standard for key encapsulation mechanism in the third round of the NIST post-quantum cryptography standardization process, has naturally raised concerns regarding its resilience against side-channel analysis and other physical attacks. In this paper, we propose a method for profiling the secret key using multiple features extracted based on a binary plaintext-checking oracle. In addition, we incorporate deep learning into the power analysis attack and propose a convolutional neural network suitable for multi-feature recognition. The experimental results demonstrate that our approach achieves an average key recovery success rate of 64.15% by establishing secret key templates. Compared to single-feature recovery, our approach bypasses the intermediate value recovery process and directly reconstructs the representation of the secret key. Our approach improves the correct key guess rate by 54% compared to single-feature recovery and is robust against invalid attacks caused by errors in single-feature recovery. Our approach was performed against the Kyber768 implementation from \(\texttt{pqm4}\) running on STM32F429 M4-cortex CPU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Announcing the commercial national security algorithm suite 2.0. Technical report (2022)

    Google Scholar 

  2. Alagic, G., et al.: Status report on the third round of the nist post-quantum cryptography standardization process. US Department of Commerce, NIST (2022)

    Google Scholar 

  3. D’Anvers, J.P., Tiepelt, M., Vercauteren, F., Verbauwhede, I.: Timing attacks on error correcting codes in post-quantum schemes. In: Proceedings of ACM Workshop on Theory of Implementation Security Workshop, pp. 2–9 (2019)

    Google Scholar 

  4. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. J. Cryptol. 26, 80–101 (2013)

    Article  MathSciNet  Google Scholar 

  5. Gidney, C., Ekerå, M.: How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum 5, 433 (2021)

    Article  Google Scholar 

  6. Guo, Q., Johansson, T., Nilsson, A.: A key-recovery timing attack on post-quantum primitives using the Fujisaki-Okamoto transformation and its application on FrodoKEM. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 359–386. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_13

    Chapter  Google Scholar 

  7. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: post-quantum crypto library for the arm cortex-m4 (2019)

    Google Scholar 

  8. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise: unleashing the power of convolutional neural networks for profiled side-channel analysis. IACR Trans. Cryptogr. Hardware Embed. Syst. 148–179 (2019)

    Google Scholar 

  9. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

    Chapter  Google Scholar 

  10. Koeune, F., Standaert, F.X.: A tutorial on physical security and side-channel attacks. In: International School on Foundations of Security Analysis and Design, pp. 78–108 (2004)

    Google Scholar 

  11. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1

    Chapter  Google Scholar 

  12. Moody, D.: Post-quantum cryptography standardization: announcement and outline of nist’s call for submissions. In: International Conference on Post-Quantum Cryptography-PQCrypto (2016)

    Google Scholar 

  13. Qin, Y., Cheng, C., Zhang, X., Pan, Y., Hu, L., Ding, J.: A systematic approach and analysis of key mismatch attacks on lattice-based nist candidate kems. In: Advances in Cryptology-ASIACRYPT 2021: 27th International Conference on the Theory and Application of Cryptology and Information Security, Singapore, 6–10 December 2021, Proceedings, Part IV, vol. 27, pp. 92–121. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-92068-5_4

  14. Ravi, P., Roy, S.S.: Side-channel analysis of lattice-based PQC candidates. In: Round 3 Seminars, NIST Post Quantum Cryptography (2021)

    Google Scholar 

  15. Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic side-channel attacks on cca-secure lattice-based pke and kems. IACR Trans. Cryptogr. Hardware Embed. Syst. 307–335 (2020)

    Google Scholar 

  16. Schwabe, P., et al.: Crystals-kyber: algorithm specifications and supporting documentation (version 3.0). In: NIST Post-Quantum Cryptography-Round 3 (2019)

    Google Scholar 

  17. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE (1994)

    Google Scholar 

  18. Sim, B.Y.: Single-trace attacks on message encoding in lattice-based KEMs. IEEE Access 8, 183175–183191 (2020)

    Article  Google Scholar 

  19. Ueno, R., Xagawa, K., Tanaka, Y., Ito, A., Takahashi, J., Homma, N.: Curse of re-encryption: a generic power/em analysis on post-quantum kems. IACR Trans. Cryptogr. Hardware Embed. Syst. 296–322 (2022)

    Google Scholar 

  20. Wang, R., Ngo, K., Dubrova, E.: A message recovery attack on lwe/lwr-based pke/kems using amplitude-modulated em emanations. In: International Conference on Information Security and Cryptology, pp. 450–471. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-29371-9

  21. Xu, Z., Pemberton, O., Roy, S.S., Oswald, D., Yao, W., Zheng, Z.: Magnifying side-channel leakage of lattice-based cryptosystems with chosen ciphertexts: the case study of kyber. IEEE Trans. Comput. 71(9), 2163–2176 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key R &D Program of China (No. 2022YFB3103800), and the National Natural Science Foundation of China under Grant 62272457. We thank the anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congming Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, Y., Yang, X., Wang, A., Wei, C., Chen, T., Xu, H. (2024). Side-Channel Analysis on Lattice-Based KEM Using Multi-feature Recognition - The Case Study of Kyber. In: Seo, H., Kim, S. (eds) Information Security and Cryptology – ICISC 2023. ICISC 2023. Lecture Notes in Computer Science, vol 14561. Springer, Singapore. https://doi.org/10.1007/978-981-97-1235-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1235-9_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1234-2

  • Online ISBN: 978-981-97-1235-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics