Skip to main content

Channel Spatio-Temporal Convolutional Network for Trajectory Prediction

  • Conference paper
  • First Online:
Ubiquitous Security (UbiSec 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2034))

Included in the following conference series:

  • 83 Accesses

Abstract

Accurate and timely prediction of the future path of agents in the vicinity of an agent is the core of avoiding conflict in automated applications. The traditional method based on RNN model requires high computational cost in the process of prediction, especially for long series prediction. In order to obtain more efficient and accurate prediction trajectory, a channel spatio-temporal convolutional network framework, called CSTCN, is proposed in this paper. The framework models the spatial environment as a block of data input to the CSTCN and captures spatio-temporal interactions using an improved temporal convolutional network. Compared with the traditional model, the spatial and temporal modeling of the proposed model is calculated in each local time window so that it can be executed in parallel to obtain higher computational efficiency. Experimental results on 5 trajectory prediction benchmark datasets demonstrate that the proposed model is superior to other seven state-of-the-art models in both efficiency and accuracy.

This research was funded by the National Natural Science Foundation of China (Grant number 62272006), Natural Science Foundation of Anhui Province (Grant No. 2108085MF214) and the University Collaborative Innovation Project of Anhui Province (grant number GXXT-2022-049).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, Y., Du, J., Yang, Z., Zhou, Z., Zhang, L., Chen, H.: A survey on trajectory-prediction methods for autonomous driving. IEEE Trans. Intell. Veh. 7(3), 652–674 (2022)

    Article  Google Scholar 

  2. Li, J., Ma, H., Tomizuka, M.: Conditional generative neural system for probabilistic trajectory prediction. In: Proceedings of IEEE/RSJ International Conference Intelligent Robots and System, pp. 6150–6156 (2019)

    Google Scholar 

  3. Zhang, X., Yang, X., Zhang, W., et al.: Crowd emotion evaluation based on fuzzy inference of arousal and valence. Neurocomputing 445, 194–205 (2021)

    Article  Google Scholar 

  4. Rudenko, A., Palmieri, L., Herman, M., Kitani, K.M., Gavrila, D.M., Arras, K.O.: Human motion trajectory prediction: a survey. Int. J. Robot. Res. 39(8), 895–935 (2020)

    Article  Google Scholar 

  5. Ghorai, P., Eskandarian, A., Kim, Y.-K., Mehr, G.: State estimation and motion prediction of vehicles and vulnerable road users for cooperative autonomous driving: a survey. IEEE Trans. Intell. Transp. Syst. 23(10), 16983–17002 (2022)

    Article  Google Scholar 

  6. Korbmacher, R., Tordeux, A.: Review of pedestrian trajectory prediction methods: comparing deep learning and knowledge-based approaches. IEEE Trans. Intell. Transp. Syst. 23(12), 24126–24144 (2022)

    Article  Google Scholar 

  7. Lv, K., Yuan, L.: SKGACN: social knowledge-guided graph attention convolutional network for human trajectory prediction. IEEE Trans. Instrum. Meas. 72, 1–11 (2023)

    Google Scholar 

  8. Yang, C., Pei, Z.: Long-short term spatio-temporal aggregation for trajectory prediction. IEEE Trans. Intell. Transp. Syst. 24(4), 4114–4126 (2023)

    Article  Google Scholar 

  9. Kitani, K.M., Ziebart, B.D., Bagnell, J.A., Hebert, M.: Activity forecasting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 201–214. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_15

    Chapter  Google Scholar 

  10. Xue, H., Huynh, D.Q., Reynolds, M.: SS-LSTM: a hierarchical LSTM model for pedestrian trajectory prediction. In: Proceedings of IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1186–1194 (2018)

    Google Scholar 

  11. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 961–971 (2016)

    Google Scholar 

  12. Nikhil, N., Tran Morris, B.: Convolutional neural network for trajectory prediction. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 186–196 (2018)

    Google Scholar 

  13. Mohamed, A., Qian, K., Elhoseiny, M., Claudel, C.: Social-STGCNN: a social spatio-temporal graph convolutional neural network for human trajectory prediction. InL Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 14412–14420 (2020)

    Google Scholar 

  14. Song, X., et al.: Pedestrian trajectory prediction based on deep convolutional LSTM network. IEEE Trans. Intell. Transp. Syst. 22(6), 3285–3302 (2021)

    Article  Google Scholar 

  15. Bera, A., Randhavane, T., Manocha, D.: Aggressive, tense, or shy? Identifying personality traits from crowd videos. In: Proceedings of the International Conference on Artificial Intelligence (IJCAI), pp. 112–118 (2017)

    Google Scholar 

  16. Gupta, A., Johnson, J. Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2255–2264 (2018)

    Google Scholar 

  17. Xu, Y., Piao, Z., Gao, S.: Encoding crowd interaction with deep neural network for pedestrian trajectory prediction. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 5275–5284 (2018)

    Google Scholar 

  18. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling (2018). arXiv:1803.01271. [Online]. urlhttp://arxiv.org/abs/1803.01271

  19. Wang, C., Cai, S., Tan, G.: GraphTCN: spatio-temporal interaction modeling for human trajectory prediction. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3450–3459 (2021)

    Google Scholar 

  20. Ziebart, B.D., et al.: Planning-based prediction for pedestrians. In: Proceedings of the IEEE International Conference on Intelligent Robots and System (IROS), pp. 3931–3936 (2009)

    Google Scholar 

  21. Elfring, J., Van De Molengraft, R., Steinbuch, M.: Learning intentions for improved human motion prediction. Robot. Auton. Syst. 62(4), 591–602 (2014)

    Article  Google Scholar 

  22. Møgelmose, A., Trivedi, M.M., Moeslund, T.B.: Trajectory analysis and prediction for improved pedestrian safety: integrated framework and evaluations. In: 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea (South), pp. 330–335 (2015)

    Google Scholar 

  23. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)

    Article  Google Scholar 

  24. Farina, F., Fontanelli, D., Garulli, A., Giannitrapani, A., Prattichizzo, D.: Walking ahead: the headed social force model. PLoS ONE, 12(1), e0169734 (2017)

    Google Scholar 

  25. Ikeda, T., Chigodo, Y., Rea, D., Zanlungo, F., Shiomi, M., Kanda, T.: Modeling and prediction of pedestrian behavior based on the sub-goal concept. Science and Systems. In: Proceedings of Robotics (2012)

    Google Scholar 

  26. Shi, L., et al.: SGCN: sparse graph convolution network for pedestrian trajectory prediction. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 8994–9003 (2021)

    Google Scholar 

  27. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: Proceedings of 31st International Conference on Machine Learning (ICML), pp. 2048–2057 (2015)

    Google Scholar 

  28. Wang, F., et al.: Residual attention network for image classification. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6458 (2017)

    Google Scholar 

  29. Hu, J., Li, S., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  30. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of IEEE Conference on Computer Vision Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  31. Shu, X., Yang, J., Yan, R., Song, Y.: Expansion-squeeze-excitation fusion network for elderly activity recognition. IEEE Trans. Circuits Syst. Video Technol. 32(8), 5281–5292 (2022)

    Article  Google Scholar 

  32. Pellegrini, S., Ess, A., Schindler, K., van Gool, L.: You’ll never walk alone: Modeling social behavior for multi-target tracking. In: Proceedings of IEEE 12th International Conference on Computer Vision, pp. 261–268 (2009)

    Google Scholar 

  33. Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. In: Computer Graphics Forum, vol. 26, no. 3, pp. 655–664. Blackwell Publishing Ltd, Oxford, U.K (2007)

    Google Scholar 

  34. Zhao, T., et al.: et al.: Multi-agent tensor fusion for contextual trajectory prediction. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 12126–12134 (2019)

    Google Scholar 

Download references

Acknowledgements

During the process of writing this paper, I would like to express my special gratitude to Ying Hu for her guidance and supervision, as well as for her understanding and tolerance. Thank you to Professor Yonglong Luo for providing guidance during the model design phase, and to the School of Computer Science and Technology at Anhui Normal University for providing me with a good learning environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonglong Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, Z., Xu, L., Hu, Y., Sun, L., Luo, Y. (2024). Channel Spatio-Temporal Convolutional Network for Trajectory Prediction. In: Wang, G., Wang, H., Min, G., Georgalas, N., Meng, W. (eds) Ubiquitous Security. UbiSec 2023. Communications in Computer and Information Science, vol 2034. Springer, Singapore. https://doi.org/10.1007/978-981-97-1274-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1274-8_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1273-1

  • Online ISBN: 978-981-97-1274-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics