Skip to main content

An Epidemiological Control Strategy Model of SVEIMQR

  • Conference paper
  • First Online:
Artificial Intelligence and Machine Learning (IAIC 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2058))

Included in the following conference series:

  • 101 Accesses

Abstract

A new epidemiological model SVEIMQR (Susceptible–Vaccinated–Exposed–Infected-Mutant–Quarantined–Recovered) is proposed to explore COVID-19 transmission mechanism. Based on this model, this paper puts forward a hybrid control strategy model by considering “protection strategy” and “blocking strategy” with the purpose to reduce the number of infected. By comparing the proposed hybrid control strategy model with other strategies, the effectiveness of the hybrid control strategy model is verified. In order to reduce the number of infected and the cost as much as possible, we analyze the optimal control of the hybrid control model, prove the existence of the optimal control by using the Pontryagin's minimum principle, and get the optimal control system. The experimental results show that with the help of optimal control theory can minimize the cost of the hybrid control strategy and achieve the optimal control effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, C., et al.: Clinical features of patients infected with 2019 novel coronavirus in Wuhan China. Lancet 395(10223), 497–506 (2020)

    Article  Google Scholar 

  2. Li, T., Guo, Y.: Optimal control and cost-effectiveness analysis of a new COVID-19 model for Omicron strain. Physica A Stat. Mech. Appl. 606, 128134 (2022)

    Google Scholar 

  3. Qian, Y.: A Non-autonom SIR model in epidemiology. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds.) ICAIS 2022. LNCS, vol. 13339, pp. 230–238. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06788-4_20

  4. Kudryashov, N.A., Chmykhov, M.A., Vigdorowitsch, M.: Analytical features of the SIR model and their applications to COVID-19. Appl. Math. Model. 90, 466–473 (2021)

    Article  MathSciNet  Google Scholar 

  5. Hethcote, H.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2020)

    Article  MathSciNet  Google Scholar 

  6. Kudryashov, N.A., Chmykhov, M.A., Vigdorowitsch, M.: Comparison of some COVID-19 data with solutions of the SIR-model. AIP Conf. Proc. 2425(1), 340009 (2022)

    Google Scholar 

  7. Qiao, W., Chen, B., Jiang, W., et al.: Research on Epidemic Spreading Model Based on Double Groups. International Conference on Artificial Intelligence and Security. Cham: Springer International Publishing. 1586, 75–85 (2022). https://doi.org/10.1007/978-3-031-06767-9_6

  8. Diaz, P., Constantine, P., Kalmbach, K., et al.: A modified SEIR model for the spread of Ebola in Western Africa and metrics for resource allocation. Appl. Math. Comput.Comput. 324, 141–155 (2018)

    MathSciNet  Google Scholar 

  9. Cooper, I., Mondal, A., Antonopoulos, C.G., Arindam, M.: Dynamical analysis of the infection status in diverse communities due to COVID-19 using a modified SIR model. Nonlinear Dyn. 109(1), 19–32 (2022)

    Google Scholar 

  10. Efimov, D., Ushirobira, R.: On an interval prediction of COVID-19 development based on a SEIR epidemic model. Annu. Rev. Control.. Rev. Control. 51, 477–487 (2021)

    Article  MathSciNet  Google Scholar 

  11. Chen, M., Kuo, C.L., Chan, W.K.V.: Control of COVID-19 Pandemic: vaccination strategies simulation under probabilistic node-level model. In: International Conference on Intelligent Computing and Signal Processing (ICSP), pp. 119–125. IEEE (2021)

    Google Scholar 

  12. Libotte, G.B., Lobato, F.S., Platt, G.M., et al.: Determination of an optimal control strategy for vaccine administration in COVID-19 pandemic treatment. Comput. Methods Programs Biomed.. Methods Programs Biomed. 196, 105664 (2020)

    Article  Google Scholar 

  13. Kumar, A., Arora, S., Sambhav, S.: SEIR epidemiology modelling with restricted mobilities in COVID-19. In: IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), pp. 1–5. IEEE (2021)

    Google Scholar 

  14. Dickens, B.L., Koo, J.R., Lim, J.T., et al.: Modelling lockdown and exit strategies for COVID-19 in Singapore. The Lancet Regional Health–Western Pacific 1 (2020)

    Google Scholar 

  15. Nainggolan, J., Harianto, J., Tasman H.: An optimal control of prevention and treatment of COVID-19 spread in Indonesia. Commun. Math. Biol. Neurosci. 2023 (2023). Article ID 3

    Google Scholar 

  16. Khoshnaw, S., Mohammed, A.S.: Minimizing the effects of COVID-19 using optimal control strategies (2023). https://doi.org/10.22541/au.168749645.54796660/v1

  17. Zamir, M., Abdeljawad, T., Nadeem, F., et al.: An optimal control analysis of a COVID-19 model. Alex. Eng. J. 60(3), 2875–2884 (2021)

    Article  Google Scholar 

  18. Perkins, T.A., España, G.: Optimal control of the COVID-19 pandemic with nonpharmaceutical interventions. Bull. Math. Biol. 82(9), 1–24 (2020)

    Article  Google Scholar 

  19. Olaniyi, S., Obabiyi, O.S., Okosun, K.O., et al.: Mathematical modelling and optimal cost-effective control of COVID-19 transmission dynamics. Eur. Phys. J. Plus. 135(11), 938 (2020)

    Article  Google Scholar 

  20. Alimohamadi, Y., Taghdir, M., Sepandi, M.: Estimate of the basic reproduction number for COVID-19: a systematic review and meta-analysis. J. Prev. Med. Public Health 53(3), 151 (2020)

    Article  Google Scholar 

  21. D’Arienzo, M., Coniglio, A.: Assessment of the SARS-CoV-2 basic reproduction number, R0, based on the early phase of COVID-19 outbreak in Italy. Biosafety Health. 2(2), 57–59 (2020)

    Article  Google Scholar 

  22. Van, den. Driessche. P., Watmough, J.: Reproduction numbersand sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002)

    Google Scholar 

  23. Aghdaoui, H., Alaoui, A.L., Nisar, K.S., et al.: On analysis and optimal control of a SEIRI epidemic model with general incidence rate. Results Physis 20, 103681 (2021)

    Article  Google Scholar 

  24. Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Springer, New York (2012). https://doi.org/10.1007/978-1-4612-6380-7

  25. Chukwu, C.W., Alqahtani, R.T., Alfiniyah, C., et al.: A Pontryagin’s maximum principle and optimal control model with cost-effectiveness analysis of the COVID-19 epidemic. Decis. Analyt. J. 8, 100273 (2023)

    Article  Google Scholar 

  26. Madubueze, C.E., Dachollom, S., Onwubuya. I.O.: Controlling the spread of COVID-19: optimal control analysis. Comput. Math. Meth. Med. (2020)

    Google Scholar 

  27. Li, C., Lei, H., Hu, Z., et al.: A stochastic model with optimal control strategy of the transmission of Covid-19. In: IEEE International Conference on Emergency Science and Information Technology (ICESIT), pp. 62–66. IEEE (2021)

    Google Scholar 

  28. Shen, Z.H., Chu, Y.M., Khan, M.A., et al.: Mathematical modeling and optimal control of the COVID-19 dynamics. Results Phys. 31, 105028 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingmeng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., An, Y., Wu, S. (2024). An Epidemiological Control Strategy Model of SVEIMQR. In: Jin, H., Pan, Y., Lu, J. (eds) Artificial Intelligence and Machine Learning. IAIC 2023. Communications in Computer and Information Science, vol 2058. Springer, Singapore. https://doi.org/10.1007/978-981-97-1277-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1277-9_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1276-2

  • Online ISBN: 978-981-97-1277-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics