Skip to main content

YOLO-TUF: An Improved YOLOv5 Model for Small Object Detection

  • Conference paper
  • First Online:
Artificial Intelligence and Machine Learning (IAIC 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2058))

Included in the following conference series:

Abstract

Traditional target detection algorithms frequently encounter challenges in accurately detecting objects within complex, cluttered environments. This paper presents an optimized YOLOv5-based model to mitigate such limitations. Our contributions are threefold: Firstly, we enhance the upsampling procedure by amalgamating transposed convolution with the CBAM attention mechanism, fortifying the network’s fine-grained feature extraction capabilities. Secondly, we introduce an optimized feature-processing module, which enhances feature utilization while maintaining a lightweight architecture. Lastly, we integrate EfficientNet into the backbone architecture to amplify feature extraction performance. We validate our approach using the PASCAL VOC dataset, achieving an mAP0.5 of 84.00% and an mAP0.5:0.95 of 62.10%, while maintaining a modest parameter size of 13.22MB. These results mark an improvement of 4.50% ± 0.12% and 8.20% ± 0.09% over the benchmark, demonstrating an efficient trade-off between computational efficiency and detection accuracy. The proposed model outperforms conventional YOLOv5 algorithms and remains competitive with contemporary state-of-the-art object detection techniques. Code is available at https://github.com/chenxz0906chenxz/YOLO-TUF/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Adibhatla, V.A., Chih, H.C., Hsu, C.C., Cheng, J., Abbod, M.F., Shieh, J.S.: Defect detection in printed circuit boards using you-only-look-once convolutional neural networks. Electronics 9(9), 1547 (2020)

    Article  Google Scholar 

  2. Amanatiadis, A., Andreadis, I.: A survey on evaluation methods for image interpolation. Meas. Sci. Technol. 20(10), 104015 (2009)

    Article  Google Scholar 

  3. Arun, P.V.: A comparative analysis of different dem interpolation methods. Egypt. J. Remote Sens. Space Sci. 16(2), 133–139 (2013)

    MathSciNet  Google Scholar 

  4. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  5. Chen, Y., Yang, X., Zhong, B., Pan, S., Chen, D., Zhang, H.: CNNTracker: online discriminative object tracking via deep convolutional neural network. Appl. Soft Comput. 38, 1088–1098 (2016)

    Article  Google Scholar 

  6. Farhadi, A., Redmon, J.: YOLOv3: an incremental improvement. In: Computer Vision and Pattern Recognition, vol. 1804. Springer, Heidelberg (2018)

    Google Scholar 

  7. Fayaz, S., Parah, S.A., Qureshi, G., Kumar, V.: Underwater image restoration: a state-of-the-art review. IET Image Proc. 15(2), 269–285 (2021)

    Article  Google Scholar 

  8. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  9. Jocher, G., et al.: Ultralytics/yolov5: v7. 0-yolov5 sota realtime instance segmentation. Zenodo (2022)

    Google Scholar 

  10. Kisantal, M., Wojna, Z., Murawski, J., Naruniec, J., Cho, K.: Augmentation for small object detection. arXiv preprint arXiv:1902.07296 (2019)

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012)

    Google Scholar 

  12. Li, F., Chen, H., Liu, Z., Zhang, X., Wu, Z.: Fully automated detection of retinal disorders by image-based deep learning. Graefes Arch. Clin. Exp. Ophthalmol. 257, 495–505 (2019)

    Article  Google Scholar 

  13. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  14. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  15. Liu, Y., Sun, P., Wergeles, N., Shang, Y.: A survey and performance evaluation of deep learning methods for small object detection. Expert Syst. Appl. 172, 114602 (2021)

    Article  Google Scholar 

  16. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  17. Pang, J., Li, C., Shi, J., Xu, Z., Feng, H.: R2CNN: fast tiny object detection in large-scale remote sensing images. IEEE Trans. Geosci. Remote Sens. 57(8), 5512–5524 (2019)

    Article  Google Scholar 

  18. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  19. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  20. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  21. Sun, K., Wen, Q., Zhou, H.: Ganster R-CNN: occluded object detection network based on generative adversarial nets and faster R-CNN. IEEE Access 10, 105022–105030 (2022)

    Article  Google Scholar 

  22. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  23. Tong, K., Wu, Y., Zhou, F.: Recent advances in small object detection based on deep learning: a review. Image Vis. Comput. 97, 103910 (2020)

    Article  Google Scholar 

  24. Wang, S., et al.: Artificial intelligence in lung cancer pathology image analysis. Cancers 11(11), 1673 (2019)

    Article  Google Scholar 

  25. Yang, Y., Zhou, Y., Din, N.U., Li, J., He, Y., Zhang, L.: An improved YOLOv5 model for detecting laser welding defects of lithium battery pole. Appl. Sci. 13(4), 2402 (2023)

    Article  Google Scholar 

  26. Yue, L., Shen, H., Li, J., Yuan, Q., Zhang, H., Zhang, L.: Image super-resolution: the techniques, applications, and future. Signal Process. 128, 389–408 (2016)

    Article  Google Scholar 

  27. Zhang, Q., Zhang, H., Lu, X.: Adaptive feature fusion for small object detection. Appl. Sci. 12(22), 11854 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhicai Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, H., Yang, W., Wang, W., Liu, Z. (2024). YOLO-TUF: An Improved YOLOv5 Model for Small Object Detection. In: Jin, H., Pan, Y., Lu, J. (eds) Artificial Intelligence and Machine Learning. IAIC 2023. Communications in Computer and Information Science, vol 2058. Springer, Singapore. https://doi.org/10.1007/978-981-97-1277-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1277-9_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1276-2

  • Online ISBN: 978-981-97-1277-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics