Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1166))

  • 406 Accesses

Abstract

The medical community is working harder to develop quick and accurate methods of diagnosing the virus in response to the COVID-19 pandemic. The speed and efficiency of image-based COVID-19 diagnosis are its benefits, but it also carries a risk of error and necessitates the involvement of numerous skilled radiologists. In this paper, a novel convolutional neural network architecture called AlexNet is presented. It has the capacity to automatically learn features in a hierarchy and recognize complex patterns and improves the model’s recognition of disease-related features. In addition, AlexNet’s adaptability and generalization capabilities contribute to its effectiveness in processing various imaging datasets. AlexNet therefore has great potential to identify complex patterns associated with COVID-19-related lung abnormalities. Nevertheless, it also has certain limitations, including the need for a large amount of processing power, the possibility of overfitting, the lack of sufficient interpretability, and the need for further development in order to make it more applicable to particular diagnostic tasks. In summary, collaborative efforts between the AI research community and healthcare professionals will continue to seek accurate, efficient, and ethical solutions for image-based COVID-19 diagnosis.

Y. Peng—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lin, X.-W., et al.: A novel method based on multi-molecular infrared (MM-IR) AlexNet for rapid detection of trace harmful substances in flour. Food Bioprocess Technol. 16(3) (2023)

    Google Scholar 

  2. Luo, X., Wen, W., Wang, J., Xu, S., Gao, Y., Huang, J.: Health classification of Meibomian gland images using keratography 5M based on AlexNet model. Comput. Methods Programs Biomed. 219 (2022). https://doi.org/10.1016/j.cmpb.2022.106742

  3. Hosny, K.M., Kassem, M.A., Fouad, M.M.: Classification of skin lesions into seven classes using transfer learning with AlexNet. J. Digit. Imaging 33, 1325–1334 (2020)

    Article  Google Scholar 

  4. Badawi, A.A., et al.: Towards the AlexNet moment for homomorphic encryption: HCNN, the first homomorphic CNN on encrypted data with GPUs. IEEE Trans. Emerg. Top. Comput. 9(3), 1330–1343 (2021). https://doi.org/10.1109/tetc.2020.3014636

    Article  MathSciNet  Google Scholar 

  5. Shen, Z., Yang, H., Zhang, S.: Optimal approximation rate of ReLU networks in terms of width and depth. J. de mathematiques pures et appliquees 157 (2022). https://doi.org/10.1016/j.matpur.2021.07.009

  6. Liang, X., Xu, J.: Biased ReLU neural networks. Neurocomputing 423, 71–79 (2021). https://doi.org/10.1016/j.neucom.2020.09.050

    Article  Google Scholar 

  7. Xu, Y., Wang, Y., Razmjooy, N.: Lung cancer diagnosis in CT images based on Alexnet optimized by modified Bowerbird optimization algorithm. Biomed. Signal Process. Control 77, 103791 (2022). https://doi.org/10.1016/j.bspc.2022.103791

    Article  Google Scholar 

  8. Zhuang, J., et al.: Evaluation of different deep convolutional neural networks for detection of broadleaf weed seedlings in wheat. Pest Manag. Sci. 78(2) (2022).https://doi.org/10.1002/ps.6656

  9. Xie, J., et al.: Advanced dropout: a model-free methodology for Bayesian dropout optimization. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 4605–4625 (2022). https://doi.org/10.1109/tpami.2021.3083089

    Article  Google Scholar 

  10. Salehinejad, H., Valaee, S.: EDropout: energy-based dropout and pruning of deep neural networks. IEEE Trans. Neural Netw. Learn. Syst. 33(10), 5279–5292 (2022). https://doi.org/10.1109/tnnls.2021.3069970

    Article  Google Scholar 

  11. Cheng, J., Huang, W., Lam, H.-K., Cao, J., Zhang, Y.: Fuzzy-model-based control for singularly perturbed systems with nonhomogeneous Markov switching: a dropout compensation strategy. IEEE Trans. Fuzzy Syst. 30(2), 530–541 (2022). https://doi.org/10.1109/tfuzz.2020.3041588

    Article  Google Scholar 

  12. Pandey, M., et al.: The transformational role of GPU computing and deep learning in drug discovery. Nat. Mach. Intell. 4(3), 211–221 (2022). https://doi.org/10.1038/s42256-022-00463-x

    Article  Google Scholar 

  13. Yidi, W., Kaihao, M., Xiao, Y., Zhi, L., James, C.: Elastic deep learning in multi-tenant GPU clusters. IEEE Trans. Parallel Distrib. Syst. 33(1), 144–158 (2022). https://doi.org/10.1109/tpds.2021.3064966

    Article  Google Scholar 

  14. Sun, S., et al.: Fault diagnosis of conventional circuit breaker contact system based on time-frequency analysis and improved Alexnet. IEEE Trans. Instrum. Meas. 70 (2021). https://doi.org/10.1109/tim.2020.3045798

  15. Gu, R., et al.: Liquid: intelligent resource estimation and network-efficient scheduling for deep learning jobs on distributed GPU clusters. IEEE Trans. Parallel Distrib. Syst. 33(11), 2808–2820 (2022). https://doi.org/10.1109/tpds.2021.3138825

    Article  Google Scholar 

  16. Lu, T., Yu, F., Xue, C., Han, B.: Identification, classification, and quantification of three physical mechanisms in oil-in-water emulsions using AlexNet with transfer learning. J. Food Eng. 288 (2021). https://doi.org/10.1016/j.jfoodeng.2020.110220

  17. Robinson, P.C., et al.: COVID-19 therapeutics: challenges and directions for the future. Proc. Natl. Acad. Sci. 119(15), e2119893119 (2022)

    Article  Google Scholar 

  18. Díaz, A., Esparcia, C., López, R.: The diversifying role of socially responsible investments during the COVID-19 crisis: a risk management and portfolio performance analysis. Econ. Anal. Policy 75, 39–60 (2022)

    Article  Google Scholar 

  19. Yuan, Y., Jiao, B., Qu, L., Yang, D., Liu, R.: The development of COVID-19 treatment. Front. Immunol. 14, 1125246 (2023)

    Article  Google Scholar 

  20. Mueller, Y.M., et al.: Stratification of hospitalized COVID-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning. Nat. Commun. 13(1), 915 (2022). https://doi.org/10.1038/s41467-022-28621-0

  21. Qorib, M., Oladunni, T., Denis, M., Ososanya, E., Cotae, P.: Covid-19 vaccine hesitancy: text mining, sentiment analysis and machine learning on COVID-19 vaccination Twitter dataset. Expert Syst. Appl. 212, 118715 (2023). https://doi.org/10.1016/j.eswa.2022.118715

    Article  Google Scholar 

  22. Aslan, M.F., Sabanci, K., Durdu, A., Unlersen, M.F.: COVID-19 diagnosis using state-of-the-art CNN architecture features and Bayesian optimization. Comput. Biol. Med. 142, 105244 (2022). https://doi.org/10.1016/j.compbiomed.2022.105244

    Article  Google Scholar 

  23. Basu, A., Sheikh, K.H., Cuevas, E., Sarkar, R.: COVID-19 detection from CT scans using a two-stage framework. Expert Syst. Appl. 193, 116377 (2022). https://doi.org/10.1016/j.eswa.2021.116377

    Article  Google Scholar 

  24. Bernal, A.J., et al.: Molnupiravir for oral treatment of covid-19 in nonhospitalized patients. N. Engl. J. Med. 386(6) (2022). https://doi.org/10.1056/NEJMoa2116044

  25. Watson, O.J., Barnsley, G., Toor, J., Hogan, A.B., Winskill, P., Ghani, A.C.: Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. Lancet Infect. Dis. 22(9), 1293–1302 (2022)

    Article  Google Scholar 

  26. Bhatele, K.R., et al.: COVID-19 detection: a systematic review of machine and deep learning-based approaches utilizing chest X-rays and CT scans. Cognit. Comput., 1–38 (2022). https://doi.org/10.1007/s12559-022-10076-6

  27. Farhangnia, P., et al.: Recent advances in passive immunotherapies for COVID-19: the evidence-Based approaches and clinical trials. Int. Immunopharmacol. 109, 108786 (2022)

    Article  Google Scholar 

  28. Jiang, D., Wang, X., Zhao, R.: Analysis on the economic recovery in the post-COVID-19 era: evidence from China. Front. Public Health 9, 787190 (2022)

    Article  Google Scholar 

  29. Attallah, O., Samir, A.: A wavelet-based deep learning pipeline for efficient COVID-19 diagnosis via CT slices. Appl. Soft Comput. 128, 109401 (2022). https://doi.org/10.1016/j.asoc.2022.109401

    Article  Google Scholar 

  30. Jadhav, S., Deng, G., Zawin, M., Kaufman, A.E.: COVID -view: diagnosis of COVID-19 using chest CT. IEEE Trans. Vis. Comput. Graph. 28(1), 227–237 (2022). https://doi.org/10.1109/tvcg.2021.3114851

    Article  Google Scholar 

  31. Bhattacharyya, A., Bhaik, D., Kumar, S., Thakur, P., Sharma, R., Pachori, R.B.: A deep learning based approach for automatic detection of COVID-19 cases using chest X-ray images. Biomed. Signal Process. Control 71(Part), 103182 (2022). https://doi.org/10.1016/j.bspc.2021.103182

  32. Goel, T., Murugan, R., Mirjalili, S., Chakrabartty, D.K.: Multi-COVID-net: multi-objective optimized network for COVID-19 diagnosis from chest X-ray images. Appl. Soft Comput. 115, 108250 (2022). https://doi.org/10.1016/j.asoc.2021.108250

    Article  Google Scholar 

  33. Ieracitano, C., et al.: A fuzzy-enhanced deep learning approach for early detection of Covid-19 pneumonia from portable chest X-ray images. Neurocomputing 481, 202–215 (2022). https://doi.org/10.1016/j.neucom.2022.01.055

    Article  Google Scholar 

  34. Kumar, A., Tripathi, A.R., Satapathy, S.C., Zhang, Y.D.: SARS-Net: COVID-19 detection from chest X-rays by combining graph convolutional network and convolutional neural network. Pattern Recognit. 122(1), 108255 (2022). https://doi.org/10.1016/j.patcog.2021.108255

    Article  Google Scholar 

  35. Aslan, M.F., Unlersen, M.F., Sabanci, K., Durdu, A.: CNN-based transfer learning-BiLSTM network: a novel approach for Covid-19 infection detection. Appl. Soft Comput. 98, 106912 (2021). https://doi.org/10.1016/j.asoc.2020.106912

    Article  Google Scholar 

  36. Muhammad, U., Hoque, M.Z., Oussalah, M., Keskinarkaus, A., Seppänen, T., Sarder, P.: SAM: Self-augmentation mechanism for COVID-19 detection using chest X-ray images. Knowl. Based Syst. 241, 108207 (2022). https://doi.org/10.1016/j.knosys.2022.108207

    Article  Google Scholar 

  37. Xu, X., Tian, H., Zhang, X., Qi, L., He, Q., Dou, W.: DisCOV: distributed COVID-19 detection on X-ray images with edge-cloud collaboration. IEEE Trans. Serv. Comput. 15(3), 1206–1219 (2022). https://doi.org/10.1109/tsc.2022.3142265

    Article  Google Scholar 

  38. Mahbub, M.K., Biswas, M., Gaur, L., Alenezi, F., Santosh, K.C.: Deep features to detect pulmonary abnormalities in chest X-rays due to infectious diseaseX: Covid-19, pneumonia, and tuberculosis. Inf. Sci. 592, 389–401 (2022). https://doi.org/10.1016/j.ins.2022.01.062

    Article  Google Scholar 

  39. Malhotra, A., et al.: Multi-task driven explainable diagnosis of COVID-19 using chest X-ray images. Pattern Recognit. 122(1), 108243 (2022). https://doi.org/10.1016/j.patcog.2021.108243

    Article  Google Scholar 

  40. Hashimoto, H., et al.: A swallowing decoder based on deep transfer learning: AlexNet classification of the intracranial electrocorticogram. Int. J. Neural Syst. 31(11), 2050056 (2021). https://doi.org/10.1142/s0129065720500562

    Article  Google Scholar 

  41. Davari, N., Akbarizadeh, G., Mashhour, E.: Corona detection and power equipment classification based on GoogleNet-AlexNet: an accurate and intelligent defect detection model based on deep learning for power distribution lines. IEEE Trans. Power Deliv. 37(4), 2766–2774 (2022). https://doi.org/10.1109/tpwrd.2021.3116489

    Article  Google Scholar 

  42. Daubechies, I., DeVore, R., Foucart, S., Hanin, B., Petrova, G.: Nonlinear Approximation and (Deep) ReLU Networks. Constr. Approx. (2021). https://doi.org/10.1007/s00365-021-09548-z

    Article  Google Scholar 

  43. Opschoor, J.A.A., Schwab, C., Zech, J.: Exponential ReLU DNN expression of holomorphic maps in high dimension. Constr. Approx. 55(1) (2022). https://doi.org/10.1007/s00365-021-09542-5

  44. He, M., Zhao, X., Lu, Y., Hu, Y.: An improved AlexNet model for automated skeletal maturity assessment using hand X-ray images. Future Gener. Comput. Syst. Int. J. Esci. 121, 106–113 (2021). https://doi.org/10.1016/j.future.2021.03.018

    Article  Google Scholar 

  45. Dhar, P., Dutta, S., Mukherjee, V.: Cross-wavelet assisted convolution neural network (Alexnet) approach for phonocardiogram signals classification. Biomed. Signal Process. Control 63, 102142 (2021). https://doi.org/10.1016/j.bspc.2020.102142

    Article  Google Scholar 

  46. Chen, J., et al.: Medical image segmentation and reconstruction of prostate tumor based on 3D AlexNet. Comput. Methods Programs Biomed. 200, 105878 (2021)

    Article  Google Scholar 

  47. Zarini, H., Khalili, A., Tabassum, H., Rasti, M., Saad, W.: AlexNet classifier and support vector regressor for scheduling and power control in multimedia heterogeneous networks. IEEE Trans. Mob. Comput. 22 (01) (2021). https://doi.org/10.1109/tmc.2021.3123200

  48. Sabitha, P., Meeragandhi, G.: A dual stage AlexNet-HHO-DrpXLM archetype for an effective feature extraction, classification and prediction of liver cancer based on histopathology images. Biomed. Signal Process. Control 77, 103833 (2022). https://doi.org/10.1016/j.bspc.2022.103833

    Article  Google Scholar 

  49. Alencastre-Miranda, M., Johnson, R.R., Krebs, H.I.: Convolutional neural networks and transfer learning for quality inspection of different sugarcane varieties. IEEE Trans. Ind. Inf. 17(2), 787–794 (2021). https://doi.org/10.1109/tii.2020.2992229

    Article  Google Scholar 

  50. Chen, T., Zhang, X., You, M., Zheng, G., Lambotharan, S.: A GNN-based supervised learning framework for resource allocation in wireless IoT networks. IEEE Internet Things J. 9(3), 1712–1724 (2022). https://doi.org/10.1109/jiot.2021.3091551

    Article  Google Scholar 

  51. Li, X., Liu, H., Wang, W., Zheng, Y., Lv, H., Lv, Z.: Big data analysis of the internet of things in the digital twins of smart city based on deep learning. Future Gener. Comput. Syst. 128, 167–177 (2022)

    Article  Google Scholar 

  52. Portilla, L., et al.: Wirelessly powered large-area electronics for the Internet of Things. Nat. Electron. 6(1), 10–17 (2023)

    Google Scholar 

  53. Chen, H.-C., et al.: AlexNet convolutional neural network for disease detection and classification of tomato leaf. Electronics 11(6), 951 (2022)

    Article  Google Scholar 

  54. Ibrahim, R., Shafiq, M.O.: Augmented Score-CAM: high resolution visual interpretations for deep neural networks. Knowl. Based Syst. 252, 109287 (2022). https://doi.org/10.1016/j.knosys.2022.109287

    Article  Google Scholar 

  55. Zhang, B., Dong, Z., Zhang, J., Lin, H.: Functional network: a novel framework for interpretability of deep neural networks. Neurocomputing 519, 94–103 (2023). https://doi.org/10.1016/j.neucom.2022.11.035

    Article  Google Scholar 

  56. Salahuddin, Z., Woodruff, H.C., Chatterjee, A., Lambin, P.: Transparency of deep neural networks for medical image analysis: a review of interpretability methods. Comput. Biol. Med. 140, 105111 (2022). https://doi.org/10.1016/j.compbiomed.2021.105111

    Article  Google Scholar 

Download references

Acknowledgments

The research work was supported by the open project of State Key Laboratory of Millimeter Waves (Grant No. K202218).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuwen Chen or Yudong Zhang .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors declare there are no conflicts of interest regarding this paper.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, M., Peng, Y., Wang, S., Chen, S., Zhang, Y. (2024). AlexNet for Image-Based COVID-19 Diagnosis. In: Su, R., Zhang, YD., Frangi, A.F. (eds) Proceedings of 2023 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2023). MICAD 2023. Lecture Notes in Electrical Engineering, vol 1166. Springer, Singapore. https://doi.org/10.1007/978-981-97-1335-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1335-6_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1334-9

  • Online ISBN: 978-981-97-1335-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics