Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sung, H.: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer journal for clinicians, 71(3): 209–249 (2021). https://doi.org/10.3322/caac.21660
Ganesan, P., Kulik, L.M.: Hepatocellular carcinoma: new developments. Clin. Liver disease 27(1), 85–102 (2023). https://doi.org/10.1016/j.cld.2022.08.004
Laface, C., et al.: Targeted Therapy for Hepatocellular Carcinoma: Old and New Opportunities. Cancers, 14(16), 4028 (2022).https://doi.org/10.3390/cancers14164028
Sangro, B., Sarobe, P., Hervás-Stubbs, S., Melero, I.: Advances in immunotherapy for hepatocellular carcinoma. Nature Rev.. Gastroenterol. Hepatol. 18(8): 525–543 (2021). https://doi.org/10.1038/s41575-021-00438-0
Liu X, et al.: Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nature Cell Biol. 25(3), 404–414 (2023). https://doi.org/10.1038/s41556-023-01091-2
Zhao, S., et al.: Crosstalk of disulfidptosis-related subtypes, establishment of a prognostic signature and immune infiltration characteristics in bladder cancer based on a machine learning survival framework. Front. Endocrinol. 14 1180404 (2023). https://doi.org/10.3389/fendo.2023.1180404
Qi, C., Ma, J., Sun, J., Wu, X., Ding, J.: The role of molecular subtypes and immune infiltration characteristics based on disulfidptosis-associated genes in lung adenocarcinoma. Aging 15(11), 5075–5095 (2023). https://doi.org/10.18632/aging.204782
Liu, L, et al.: Disulfidptosis-associated LncRNAs index predicts prognosis and chemotherapy drugs sensitivity in cervical cancer. Sci. Reports 13(1), 12470 (2023). https://doi.org/10.1038/s41598-023-39669-3
Tang, D., Chen, X., Kang, R., Kroemer, G.: Ferroptosis: molecular mechanisms and health implications. Cell Res. 31(2), 107–125 (2021). https://doi.org/10.1038/s41422-020-00441-1
Liang, C., Zhang, X., Yang, M., Dong, X.: Recent progress in ferroptosis inducers for cancer therapy. Advanced materials (Deerfield Beach, Fla.). 31(51), e1904197 (2019). https://doi.org/10.1002/adma.201904197
Liang, J.Y., et al.: A novel ferroptosis-related gene signature for overall survival prediction in patients with hepatocellular carcinoma. Int. J. Biol. Sci. 16(13): 2430–2441 (2020). https://doi.org/10.7150/ijbs.45050
Li, C.: SKP2 promotes breast cancer tumorigenesis and radiation tolerance through PDCD4 ubiquitination. J. Exper. Clin. Cancer Res. CR, 38(1), 76 (2019). https://doi.org/10.1186/s13046-019-1069-3
Zhou, N., Bao, J.: FerrDb: a manually curated resource for regulators and markers of ferroptosis and ferroptosis-disease associations. Database : J. Biol. Databases Curation 2020, baaa021 (2020). https://doi.org/10.1093/database/baaa021
Keyhanmanesh, R., Hamidian, G., Alipour, M.R., Ranjbar, M., Oghbaei, H.: Protective effects of sodium nitrate against testicular apoptosis and spermatogenesis impairments in streptozotocin-induced diabetic male rats. Life sciences, 211, 63–73. (2018). https://doi.org/10.1016/j.lfs.2018.09.019
Fang, J., Chen, F., Liu, D., Gu, F., Chen, Z., Wang, Y.: Prognostic value of immune checkpoint molecules in breast cancer. Biosci. Reports 40(7): BSR20201054 (2020). https://doi.org/10.1042/BSR20201054
Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A. (2022). Hepatocellular carcinoma. Lancet (London, England), 400 (10360), 1345–1362. https://doi.org/10.1016/S0140-6736(22)01200-4
Couri, T., Pillai, A.: Goals and targets for personalized therapy for HCC. Hepatology international, 13(2): 125–137 (2019). https://doi.org/10.1007/s12072-018-9919-1
Meng, Y., Chen, X., Deng, G.: Disulfidptosis: a new form of regulated cell death for cancer treatment. Mol. Biomed. 4(1), 18 (2023). https://doi.org/10.1186/s43556-023-00132-4
Wang, L., Hensley, C.R., HowellM, M.E., Ning, S.: Bioinformatics-Driven Identification of p62 as a crucial Oncogene in Liver Cancer. Front. Oncol. 12, 923009 (2022). https://doi.org/10.3389/fonc.2022.923009
Oyadomari, S., Mori, M.: Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell death and differentiation, 11(4), 381–389 (2004). https://doi.org/10.1038/sj.cdd.4401373
Xiao, F., et al.: Intermedin facilitates hepatocellular carcinoma cell survival and invasion via ERK1/2-EGR1/DDIT3 signaling cascade. Sci. Reports 11(1), 488 (2021). https://doi.org/10.1038/s41598-020-80066-x
Shen, Z., et al.: Combined inhibition of AURKA and HSF1 suppresses proliferation and promotes apoptosis in hepatocellular carcinoma by activating endoplasmic reticulum stress. Cellular Oncol. (Dordrecht), 44(5), 1035–1049 (2021). https://doi.org/10.1007/s13402-021-00617-w
Li, G., Tian, Y., Gao, Z.: The role of AURKA/miR-199b-3p in hepatocellular carcinoma cells. J. Clin. Lab. Anal. 36(12), e24758 (2022). https://doi.org/10.1002/jcla.24758
Shen, H.M., Zhang, D., Xiao, P., Qu, B., Sun, Y.F.: E2F1-mediated KDM4A-AS1 up-regulation promotes EMT of hepatocellular carcinoma cells by recruiting ILF3 to stabilize AURKA mRNA. Cancer Gene Therapy, 30(7), 1007–1017 (2023). https://doi.org/10.1038/s41417-023-00607-0
Li, G., et al.: LIMIT is an immunogenic lncRNA in cancer immunity and immunotherapy. Nature cell biology, 23(5), 526–537 (2021). http://https://doi.org/10.1038/s41556-021-00672-3
Fan, R., et al.: Enhanced antitumoral efficacy and immune response following conditionally replicative adenovirus containing constitutive HSF1 delivery to rodent tumors. J. Trans. Med. 10 101 (2012). https://doi.org/10.1186/1479-5876-10-101
Mou, L., et al.: Clinical and Prognostic Value of PPIA, SQSTM1, and CCL20 in Hepatocellular Carcinoma Patients by Single-Cell Transcriptome Analysis. Cells 11(19), 3078 (2022). https://doi.org/10.3390/cells11193078
Wang, X., et al.: The NQO1/p53/SREBP1 axis promotes hepatocellular carcinoma progression and metastasis by regulating Snail stability. Oncogene. 41(47), 5107–5120 (2022). https://doi.org/10.1038/s41388-022-02477-6
Deng, C., Gong, S., Lin, L., Tang, J., Pang, X., Wu, P.: A human pan-cancer system analysis of heat shock protein family a member 5. Am. J. Cancer Res. 13(5), 1698–1717 (2023)
Aran, G., et al.: CD5L is upregulated in hepatocellular carcinoma and promotes liver cancer cell proliferation and antiapoptotic responses by binding to HSPA5 (GRP78). FASEB J.: Off. Public. Fed.. Am. Societies Exper. Biol. 32(7), 3878–3891. https://doi.org/10.1096/fj.201700941RR
Zhu, R.K., Zhang, W., Zhang, Y.X,. Hui, Z., Wang, X.W.: A pan-cancer analysis to determine the prognostic analysis and immune infiltration of HSPA5. Current cancer drug targets (2023). https://doi.org/10.2174/1568009623666230508111721
Sun, H., et al.: Novel prognostic signature based on HRAS, MAPK3 and TFRC identified to be associated with ferroptosis and the immune microenvironment in hepatocellular carcinoma. Am. J. Transl. Res. 14(10), 6924–6940 (2022)
Kondapuram, S.K., Coumar, M.S.: Pan-cancer gene expression analysis: Identification of deregulated autophagy genes and drugs to target them. Gene 844, 146821 (2022). https://doi.org/10.1016/j.gene.2022.146821
Khemlina, G., Ikeda, S., Kurzrock, R.: The biology of Hepatocellular carcinoma: implications for genomic and immune therapies. Mol. Cancer, 16(1), 149 (2017). https://doi.org/10.1186/s12943-017-0712-x
Zhou, Y., Wang, X.B., Qiu, X.P., Zhang, S., Wang, C., Zheng, F.: CDKN2A promoter methylation and hepatocellular carcinoma risk: a meta-analysis. Clin. Res. Hepatol. Gastroenterol. 42(6), 529–541 (2018). https://doi.org/10.1016/j.clinre.2017.07.003
Raposo, T.P., Beirão, B.C.B., Pang, L.Y., Queiroga, F.L., Argyle, D.J.: Inflammation and cancer: till death tears them apart. Veterinary J. (London, England : 1997), 205(2), 161–174 (2015). https://doi.org/10.1016/j.tvjl.2015.04.015
Garufi, G., et al.: Neoadjuvant therapy for triple-negative breast cancer: potential predictive biomarkers of activity and efficacy of platinum chemotherapy, PARP- and immune-checkpoint-inhibitors. Expert Opinion Pharmacother. 21(6), 687–699 (2020). https://doi.org/10.1080/14656566.2020.1724957
Kaushik, I., Ramachandran, S., Zabel, C., Gaikwad, S., Srivastava, S.K.: The evolutionary legacy of immune checkpoint inhibitors. Seminars in cancer biology, 86(Pt 2), 491–498 (2022). https://doi.org/10.1016/j.semcancer.2022.03.020
Li, Y., et al.: Pan-cancer characterization of immune-related lncRNAs identifies potential oncogenic biomarkers. Nature Commun. 11(1), 1000 (2020). https://doi.org/10.1038/s41467-020-14802-2
Zhou, M., Zhang, Z., Zhao, H., Bao, S., Cheng, L., Sun, J.: An immune-related six-lncRNA signature to improve prognosis prediction of glioblastoma multiforme. Mol. Neurobiol. 55(5), 3684–3697 (2018). https://doi.org/10.1007/s12035-017-0572-9
Acknowledgment
The research was supported by National Natural Science Foundation of China (81600422) and the Basic Research Program of Shanxi Province (Free exploration category) (202303021211108).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Shen, X., Huang, Z., Jin, C., Yang, C. (2024). Identification of a Novel Model for Predicting the Prognosis and Immune Response Based on Genes Related to Ferroptosis and Disulfidptosis in Liver Hepatocellular Carcinoma. In: Su, R., Zhang, YD., Frangi, A.F. (eds) Proceedings of 2023 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2023). MICAD 2023. Lecture Notes in Electrical Engineering, vol 1166. Springer, Singapore. https://doi.org/10.1007/978-981-97-1335-6_18
Download citation
DOI: https://doi.org/10.1007/978-981-97-1335-6_18
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-1334-9
Online ISBN: 978-981-97-1335-6
eBook Packages: Computer ScienceComputer Science (R0)