Skip to main content

Progress of Intelligent Diagnosis via Multiple Brain Features in Alzheimer’s Disease

  • Conference paper
  • First Online:
Proceedings of 2023 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2023) (MICAD 2023)

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease with unknown pathogenesis that manifests with a common type of dementia. With a persistent increase in the aging population worldwide, AD has become a public health concern. Early diagnosis of AD is challenging due to its insidious onset and irreversible progression. The analysis of multiple brain features combined with artificial intelligence has been widely used for the intelligent diagnosis (ID) of AD in recent years. This study aimed to comprehensively review the relevant studies on the ID of AD from the following five aspects: clinical scales, gene and cerebrospinal fluid, brain neuroimaging, text mining, and combined features, paving a path for developing the prospects of ID in AD.

Y. Yang and X. Yao---These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Association, A.: 2019 Alzheimer’s disease facts and figures. Alzheimers Dement. 15(3), 321–387 (2019)

    Article  Google Scholar 

  2. Fabrizio, C., Termine, A., Caltagirone, C., et al.: Artificial intelligence for alzheimer's disease: Promise or challenge?. Diagnostics (Basel) 11(8), (2021)

    Google Scholar 

  3. Bucholc, M., Ding, X., Wang, H., et al.: A practical computerized decision support system for predicting the severity of Alzheimer’s disease of an individual. Expert Syst. Appl. 130, 157–171 (2019)

    Article  Google Scholar 

  4. Graham, D.P., Cully, J.A., Snow, A.L., et al.: The alzheimer's disease assessment scale - cognitive subscale: Normative data for older adult controls. Alzheimer Disease & Associated Disorders 18(4), 236–240 (2004)

    Google Scholar 

  5. Na, H.R., Park, M.H., Cho, S.T., et al.: Urinary incontinence in alzheimer’s disease is associated with clinical dementia rating-sum of boxes and barthel activities of daily living. Asia Pac. Psychiatry 7(1), 113–120 (2015)

    Article  Google Scholar 

  6. Becker, S., Boettinger, O., Sulzer, P., et al.: Everyday function in alzheimer’s and parkinson’s patients with mild cognitive impairment. J. Alzheimers Dis. 79(1), 197–209 (2021)

    Article  Google Scholar 

  7. Chen, D., Yi, F., Qin, Y., et al.: A stacking framework for multi-classification of alzheimer’s disease using neuroimaging and clinical features. J. Alzheimers Dis. 87, 1627–1636 (2022)

    Article  Google Scholar 

  8. Andrews, S.J., Fulton-Howard, B., Goate, A.: Interpretation of risk loci from genome-wide association studies of Alzheimer’s disease. The Lancet Neurol. 19(4), 326–335 (2020)

    Article  Google Scholar 

  9. Bellenguez, C., Küçükali, F., Jansen, I.E., et al.: New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 54(4), 412–436 (2022)

    Article  Google Scholar 

  10. Gaetani, L., Höglund, K., Parnetti, L., et al.: A new enzyme-linked immunosorbent assay for neurofilament light in cerebrospinal fluid: analytical validation and clinical evaluation. Alzheimer’s Res. Therapy 10(1), 8 (2018)

    Article  Google Scholar 

  11. Blennow, K., Zetterberg, H.: Biomarkers for Alzheimer’s disease: current status and prospects for the future. J. Intern. Med. 284(6), 643–663 (2018)

    Article  Google Scholar 

  12. De Velasco Oriol, J., Vallejo, E.E., Estrada, K., et al.: Benchmarking machine learning models for late-onset alzheimer’s disease prediction from genomic data. BMC Bioinform. 20(1), 709 (2019)

    Article  Google Scholar 

  13. Castillo-Barnes, D., Su, L., Ramírez, J., et al.: Autosomal dominantly inherited Alzheimer disease: analysis of genetic subgroups by machine learning. Inform. Fusion 58, 153–167 (2020)

    Article  Google Scholar 

  14. Mahendran, N., PM, D.R.V.: A deep learning framework with an embedded-based feature selection approach for the early detection of the Alzheimer’s disease. Comput. Biol. Med. (Vellore) 141, 105056 (2022)

    Google Scholar 

  15. Jin, Y., Yao, X.F., Han, L.T., et al.: Application of machine learning based on genetic data in the study of Alzheimer’s disease. PR0G. Biochem. Biophys. 48(8), 888–897 (2021)

    Google Scholar 

  16. Durgamahanthi, V., Anita Christaline, J., Shirly Edward, A.: Glcm and glrlm based texture analysis: Application to brain cancer diagnosis using histopathology images. In: Dash, S.S., Das, S., Panigrahi, B.K. (eds.) Intelligent Computing and Applications. AISC, vol. 1172, pp. 691–706. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5566-4_61

    Chapter  Google Scholar 

  17. So, J.H., Madusanka, N., Choi, H.K., et al.: Deep learning for alzheimer’s disease classification using texture features. Curr. Med. Imag. 15(7), 689–698 (2019)

    Article  Google Scholar 

  18. Raghavaiah, P., Varadarajan, S.: A cad system design for Alzheimer’s disease diagnosis using temporally consistent clustering and hybrid deep learning models. Biomed. Signal Process. Control 75, 103571 (2022)

    Article  Google Scholar 

  19. Rohini, P., Sundar, S., Ramakrishnan, S.: Characterization of alzheimer conditions in MR images using volumetric and sagittal brainstem texture features. Comput. Methods Programs Biomed. 173, 147–155 (2019)

    Article  Google Scholar 

  20. Leandrou, S., Lamnisos, D., Mamais, I., et al.: Assessment of alzheimer’s disease based on texture analysis of the entorhinal cortex. Front Aging Neurosci 12, 176 (2020)

    Article  Google Scholar 

  21. Trejo-Castro, A.I., Caballero-Luna, R.A., Garnica-López, J.A., et al.: Signal and texture features from t2 maps for the prediction of mild cognitive impairment to Alzheimer’s disease progression. Healthcare 9(8), 941 (2021)

    Google Scholar 

  22. Lee, S., Kim, K.W.: Alzheimer's disease neuroimaging, i.: associations between texture of t1-weighted magnetic resonance imaging and radiographic pathologies in Alzheimer's Disease. Eur J Neurol 28(3), 735–744 (2021)

    Google Scholar 

  23. Gomar, J.J., Ragland, J.D., Uluğ, A.M., et al.: Differential medial temporal lobe morphometric predictors of item- and relational-encoded memories in healthy individuals and in individuals with mild cognitive impairment and alzheimer’s disease. Alzheimer’s Dementia: Translational Res. Clin. Interventions 3(2), 238–246 (2017)

    Article  Google Scholar 

  24. Lee, S.H., Bachman, A.H., Yu, D., et al.: Predicting progression from mild cognitive impairment to alzheimer’s disease using longitudinal callosal atrophy. Alzheimer’s & Dementia: Diag., Assess. Disease Monitor. 2, 68–74 (2016)

    Article  Google Scholar 

  25. Zhang, Y., Wang, S., Dong, Z.: Classification of alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree. Prog. Electromagnet. Res. 144, 171–184 (2014)

    Article  Google Scholar 

  26. Pan, D., Zeng, A., Jia, L., et al.: Early detection of Alzheimer’s disease using magnetic resonance imaging: a novel approach combining convolutional neural networks and ensemble learning. Front. Neurosci. 14, 259 (2020)

    Article  Google Scholar 

  27. Khagi, B., Kwon, G.-R., Lama, R.: Comparative analysis of Alzheimer’s disease classification by CDR level using CNN, feature selection, and machine-learning techniques. Int. J. Imaging Syst. Technol. 29(3), 297–310 (2019)

    Article  Google Scholar 

  28. Phillips, O.R., Joshi, S.H., Piras, F., et al.: The superficial white matter in Alzheimer’s disease. Hum. Brain Mapp. 37(4), 1321–1334 (2016)

    Article  Google Scholar 

  29. Reas, E.T., Hagler, D.J., White, N.S., et al.: Microstructural brain changes track cognitive decline in mild cognitive impairment. NeuroImage: Clinical 20, 883–891 (2018)

    Google Scholar 

  30. Farrar, D.C., Mian, A.Z., Budson, A.E., et al.: Retained executive abilities in mild cognitive impairment are associated with increased white matter network connectivity. Eur. Radiol. 28(1), 340–347 (2018)

    Article  Google Scholar 

  31. Ebadi, A., Dalboni da Rocha, J.L., Nagaraju, D.B., et al.: Ensemble classification of Alzheimer's disease and mild cognitive impairment based on complex graph measures from diffusion tensor images. Frontiers in neuroscience 11, 56 (2017)

    Google Scholar 

  32. Marzban, E.N., Eldeib, A.M., Yassine, I.A., et al.: Alzheimer’s disease diagnosis from diffusion tensor images using convolutional neural networks. PLoS ONE 15(3), e0230409 (2020)

    Article  Google Scholar 

  33. Lim, B., van der Schaar, M.: Forecasting disease trajectories in alzheimer's disease using deep learning. https://arxiv.org/abs/1807.03159 Accessed 18 Sept 2023

  34. Crofts, J.J., Forrester, M., O’Dea, R.D.: Structure-function clustering in multiplex brain networks. Europhys. Lett. 116(1), 18003 (2016)

    Article  Google Scholar 

  35. DeYoe, E.A., Bandettini, P., Neitz, J., et al.: Functional magnetic resonance imaging (fmri) of the human brain. J. Neurosci. Methods 54(2), 171–187 (1994)

    Article  Google Scholar 

  36. Hong, L., Jie, X.: Research on classification of brain functional network in mci. Comput. Eng. Design 35(04), 1390–1394 (2014)

    Google Scholar 

  37. Ding, X.: Feature extraction and classification research of brain network based on resting state fmri for alzheimer’s disease. https://doi.org/10.27061/d.cnki.ghgdu.2019.001917 Accessed 18 Sept 2023

  38. Wang, Y.: Brain Network Study of Alzheimer Disease Based on Multimodal MRI. Harbin Institute Of Technology. https://doi.org/10.27061/d.cnki.ghgdu.2019.001917 Accessed 18 Sept 2023

  39. Zhou, H., Vallières, M., Bai, H.X., et al.: MRI features predict survival and molecular markers in diffuse lower-grade gliomas. Neuro Oncol. 19(6), 862–870 (2017)

    Article  Google Scholar 

  40. Li, Y., Liu, X., Qian, Z., et al.: Genotype prediction of atrx mutation in lower-grade gliomas using an MRI radiomics signature. Eur. Radiol. 28(7), 2960–2968 (2018)

    Article  Google Scholar 

  41. Li, Y., Jiang, J., Lu, J., et al.: Radiomics: a novel feature extraction method for brain neuron degeneration disease using 18f-fdg pet imaging and its implementation for Alzheimer’s disease and mild cognitive impairment. Therapeutic Adv. Neurol. Disorders 12, 1756286419838682 (2019)

    Google Scholar 

  42. Feng, F., Wang, P., Zhao, K., et al.: Radiomic features of hippocampal subregions in Alzheimer’s disease and amnestic mild cognitive impairment. Front. Aging Neurosci. 10, 290 (2018)

    Article  Google Scholar 

  43. Wang, M., Jiang, J., Yan, Z., et al.: Individual brain metabolic connectome indicator based on kullback-leibler divergence similarity estimation predicts progression from mild cognitive impairment to Alzheimer’s dementia. Eur. J. Nucl. Med. Mol. Imaging 47(12), 2753–2764 (2020)

    Article  Google Scholar 

  44. Yao, Z., Hu, B., Huailiang, N., et al.: Individual metabolic network for the accurate detection of Alzheimer's disease based on fdgpet imaging. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1328–1335. IEEE, Shenzhen (2016)

    Google Scholar 

  45. Roque, F.S., Jensen, P.B., Schmock, H., et al.: Using electronic patient records to discover disease correlations and stratify patient cohorts. PLoS Comput. Biol. 7(8), e1002141 (2011)

    Article  Google Scholar 

  46. Greco, I., Day, N., Riddoch-Contreras, J., et al.: Alzheimer’s disease biomarker discovery using in silico literature mining and clinical validation. J. Transl. Med. 10(1), 1–10 (2012)

    Article  Google Scholar 

  47. Urabe, M., Miyata, C., Fukuda, H., et al.: Individual analysis of changes in a single reminiscence session from nostalgic music videos using text mining. Alzheimer’s Dementia 19, e065037 (2023)

    Article  Google Scholar 

  48. Lin, W., Gao, Q., Du, M., et al.: Multiclass diagnosis of stages of Alzheimer’s disease using linear discriminant analysis scoring for multimodal data. Comput. Biol. Med. 134, 104478 (2021)

    Article  Google Scholar 

  49. Ahmed, O.B., Benois-Pineau, J., Allard, M., et al.: Recognition of Alzheimer’s disease and mild cognitive impairment with multimodal image-derived biomarkers and multiple kernel learning. Neurocomputing 220, 98–110 (2017)

    Article  Google Scholar 

  50. Liu, F., Wee, C.-Y., Chen, H., et al.: Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer’s disease and mild cognitive impairment identification. Neuroimage 84, 466–475 (2014)

    Article  Google Scholar 

  51. Ning, K., Chen, B., Sun, F., et al.: Classifying Alzheimer’s disease with brain imaging and genetic data using a neural network framework. Neurobiol. Aging 68, 151–158 (2018)

    Article  Google Scholar 

  52. Lu, D., Popuri, K., Ding, G.W., et al.: Multimodal and multiscale deep neural networks for the early diagnosis of alzheimer’s disease using structural MR and FDG-PET images. Scientific Reports 8(1), 5697 (2018)

    Google Scholar 

  53. Liu, M., Cheng, D., Wang, K., et al.: Multi-modality cascaded convolutional neural networks for Alzheimer’s disease diagnosis. Neuroinformatics 16(3–4), 295–308 (2018)

    Article  Google Scholar 

  54. Shi, J., Zheng, X., Li, Y., et al.: Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer’s disease. IEEE J. Biomed. Health Inform. 22(1), 173–183 (2018)

    Article  Google Scholar 

  55. Zhang, F., Li, Z., Zhang, B., et al.: Multi-modal deep learning model for auxiliary diagnosis of Alzheimer’s disease. Neurocomputing 361, 185–195 (2019)

    Article  Google Scholar 

  56. Zhou, T., Liu, M., Thung, K.H., et al.: Latent representation learning for Alzheimer’s disease diagnosis with incomplete multi-modality neuroimaging and genetic data. IEEE Trans. Med. Imaging 38(10), 2411–2422 (2019)

    Article  Google Scholar 

  57. Korolev, I.O., Symonds, L.L., Bozoki, A.C.: Predicting progression from mild cognitive impairment to Alzheimer’s dementia using clinical, mri, and plasma biomarkers via probabilistic pattern classification. PLoS ONE 11(2), e0138866 (2016)

    Article  Google Scholar 

  58. Da, X., Toledo, J.B., Zee, J., et al.: Integration and relative value of biomarkers for prediction of mci to ad progression: spatial patterns of brain atrophy, cognitive scores, APOE genotype and CSF biomarkers. NeuroImage: Clin. 4, 164–173 (2014)

    Google Scholar 

Download references

This work was funded by the grants of the National Key Research and Development Program of China (2020YFC2008700), the National Natural Science Foundation of China (Nos 61971275, 81830052, and 82072228), and the Shanghai Municipal Commission of Science and Technology for Capacity Building for Local Universities (No. 23010502700).

Funding

This research did not receive any specific grants from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xufeng Yao .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Y., Yao, X., Wu, T. (2024). Progress of Intelligent Diagnosis via Multiple Brain Features in Alzheimer’s Disease. In: Su, R., Zhang, YD., Frangi, A.F. (eds) Proceedings of 2023 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2023). MICAD 2023. Lecture Notes in Electrical Engineering, vol 1166. Springer, Singapore. https://doi.org/10.1007/978-981-97-1335-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1335-6_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1334-9

  • Online ISBN: 978-981-97-1335-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics