Skip to main content

End-to-End Autoencoding Architecture for the Simultaneous Generation of Medical Images and Corresponding Segmentation Masks

  • Conference paper
  • First Online:
Proceedings of 2023 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2023) (MICAD 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1166))

Abstract

Despite the increasing use of deep learning in medical image segmentation, acquiring sufficient training data remains a challenge in the medical field. In response, data augmentation techniques have been proposed; however, the generation of diverse and realistic medical images and their corresponding masks remains a difficult task, especially when working with insufficient training sets. To address these limitations, we present an end-to-end architecture based on the Hamiltonian Variational Autoencoder (HVAE). This approach yields an improved posterior distribution approximation compared to traditional Variational Autoencoders (VAE), resulting in higher image generation quality. Our method outperforms generative adversarial architectures under data-scarce conditions, showcasing enhancements in image quality and precise tumor mask synthesis. We conduct experiments on two publicly available datasets, MICCAI’s Brain Tumor Segmentation Challenge (BRATS), and Head and Neck Tumor Segmentation Challenge (HECKTOR), demonstrating the effectiveness of our method on different medical imaging modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrearczyk, V., et al.: Overview of the HECKTOR challenge at MICCAI 2021: automatic head and neck tumor segmentation and outcome prediction in PET/CT images. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds.) MICCAI 2021. LNCS, vol. 13209, pp. 1–37. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98253-9_1

  2. Baid, U., et al.: The RSNA-ASNR-MICCAI brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)

  3. Biffi, C., et al.: Learning interpretable anatomical features through deep generative models: application to cardiac remodeling. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 464–471. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_52

    Chapter  Google Scholar 

  4. Caterini, A.L., Doucet, A., Sejdinovic, D.: Hamiltonian variational auto-encoder. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  5. Chen, Y., et al.: Generative adversarial networks in medical image augmentation: a review. Comput. Biol. Med. 144, 105382 (2022)

    Article  Google Scholar 

  6. Gan, M., Wang, C.: Esophageal optical coherence tomography image synthesis using an adversarially learned variational autoencoder. Biomed. Opt. Express 13(3), 1188–1201 (2022)

    Article  Google Scholar 

  7. Goodfellow, I.J., et al.: Generative adversarial networks. arXiv preprint arXiv:1406.2661 (2014)

  8. Guibas, J.T., Virdi, T.S., Li, P.S.: Synthetic medical images from dual generative adversarial networks. arXiv preprint arXiv:1709.01872 (2017)

  9. Huo, J., et al.: Brain lesion synthesis via progressive adversarial variational auto-encoder. In: Zhao, C., Svoboda, D., Wolterink, J.M., Escobar, M. (eds.) SASHIMI 2022. LNCS, vol. 13570, pp. 101–111. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16980-9_10

    Chapter  Google Scholar 

  10. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: NNU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  11. Islam, J., Zhang, Y.: Gan-based synthetic brain pet image generation. Brain Inform. 7(1), 1–12 (2020)

    Article  Google Scholar 

  12. Kebaili, A., Lapuyade-Lahorgue, J., Ruan, S.: Deep learning approaches for data augmentation in medical imaging: a review. J. Imaging 9(4), 81 (2023)

    Article  Google Scholar 

  13. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  14. Liang, J., Chen, J.: Data augmentation of thyroid ultrasound images using generative adversarial network. In: 2021 IEEE International Ultrasonics Symposium (IUS), pp. 1–4. IEEE (2021)

    Google Scholar 

  15. Lundervold, A.S., Lundervold, A.: An overview of deep learning in medical imaging focusing on MRI. Z. Med. Phys. 29(2), 102–127 (2019)

    Article  Google Scholar 

  16. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2794–2802 (2017)

    Google Scholar 

  17. Mescheder, L., Geiger, A., Nowozin, S.: Which training methods for GANs do actually converge? In: International Conference on Machine Learning, pp. 3481–3490. PMLR (2018)

    Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Sandfort, V., Yan, K., Pickhardt, P.J., Summers, R.M.: Data augmentation using generative adversarial networks (cyclegan) to improve generalizability in CT segmentation tasks. Sci. Rep. 9(1), 1–9 (2019)

    Article  Google Scholar 

  20. Zhou, T., Vera, P., Canu, S., Ruan, S.: Missing data imputation via conditional generator and correlation learning for multimodal brain tumor segmentation. Pattern Recogn. Lett. 158, 125–132 (2022)

    Article  Google Scholar 

  21. Zhuang, P., Schwing, A.G., Koyejo, O.: FMRI data augmentation via synthesis. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1783–1787. IEEE (2019)

    Google Scholar 

  22. Delgado, J., Oyedele, L.: Deep learning with small datasets: using autoencoders to address limited datasets in construction management. Appl. Soft Comput. 112, 107836 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aghiles Kebaili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kebaili, A., Lapuyade-Lahorgue, J., Vera, P., Ruan, S. (2024). End-to-End Autoencoding Architecture for the Simultaneous Generation of Medical Images and Corresponding Segmentation Masks. In: Su, R., Zhang, YD., Frangi, A.F. (eds) Proceedings of 2023 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2023). MICAD 2023. Lecture Notes in Electrical Engineering, vol 1166. Springer, Singapore. https://doi.org/10.1007/978-981-97-1335-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1335-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1334-9

  • Online ISBN: 978-981-97-1335-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics