Skip to main content

Predicting Central Cervical Lymph Node Metastasis of Papillary Thyroid Carcinomas Using Multi-view Ultrasound Images

  • Conference paper
  • First Online:
Proceedings of 2023 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2023) (MICAD 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1166))

Abstract

Thyroid nodule classification in ultrasound images is an important task for central cervical lymph node metastasis (CLNM) of papillary thyroid carcinomas (PTC). In clinical practice, nodules are usually evaluated using thyroid ultrasound from both horizontal and vertical perspectives. Due to the low contrast, high noise, and individual differences of ultrasound images, it has become a challenging problem. To address these, we propose a method to assist in diagnosing CLNM of PTC using multi-view ultrasound images and patient information. Our network consists of two modules, ROI extraction and multi-view classification network. First, we employ the popular semantic segmentation network, U\(^{2}\)-Net, on our clinical dataset and use the results to identify the region of interest (ROI). Then we design the parallel ResNet-50 network to complete the classification task from multi-view information. Experimental results show that our method can provide useful information for clinical diagnosis and lay a technical foundation for the classification of ultrasound images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Precision, Recall, MIoU and Dice are four evaluation metrics for segmentation task.

References

  1. Megwalu, U.C., Moon, P.K.: Thyroid cancer incidence and mortality trends in the united states: 2000–2018. Thyroid 32(5), 560–570 (2022)

    Article  Google Scholar 

  2. Smulever, A., Pitoia, F.: Conservative management of low-risk papillary thyroid carcinoma: a review of the active surveillance experience. Thyroid Res. 16(1), 1–11 (2023)

    Article  Google Scholar 

  3. Yoshida, Y., Horiuchi, K., Okamoto, T.: Patients’ view on the management of papillary thyroid microcarcinoma: active surveillance or surgery. Thyroid 30, 681–687 (2020)

    Article  Google Scholar 

  4. Jiwang, L., et al.: Clinicopathologic factors and preoperative ultrasonographic characteristics for predicting central lymph node metastasis in papillary thyroid microcarcinoma: a single center retrospective study. Braz. J. Otorhinolaryngol. 88(1), 36–45 (2022)

    Article  Google Scholar 

  5. Yang, Y., et al.: Predicting central lymph node metastasis in patients with papillary thyroid carcinoma based on ultrasound radiomic and morphological features analysis. BMC Med. Imaging 23(1), 111 (2023)

    Article  Google Scholar 

  6. Ayaz, H., et al.: A hybrid deep model for brain tumor classification. In: Proceedings of 2021 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2021), pp. 282–291 (2022)

    Google Scholar 

  7. Qin, P., Kuan, W., Yishan, H., et al.: Diagnosis of benign and malignant thyroid nodules using combined conventional ultrasound and ultrasound elasticity imaging. IEEE J. Biomed. Health Inform. 24(4), 1028–1036 (2020)

    Article  Google Scholar 

  8. Liao, X., et al.: Image segmentation of thyroid nodule and capsule for diagnosing central compartment lymph node metastasis. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2765–2768 (2021)

    Google Scholar 

  9. Xiangyu, D., Huan, Z., Yahan, Y.: Ultrasonic image segmentation algorithm of thyroid nodules based on DPCNN. In: Proceedings of 2021 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2021), pp. 163–174 (2022)

    Google Scholar 

  10. Shahroudnejad, A., et al.: Thyroid nodule segmentation and classification using deep convolutional neural network and rule-based classifiers. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 3118–3121 (2021)

    Google Scholar 

  11. Kang, Q., et al.: Thyroid nodule segmentation and classification in ultrasound images through intra- and inter-task consistent learning. Med. Image Anal. 79, 102443 (2022)

    Google Scholar 

  12. Huang, H., et al.: Personalized diagnostic tool for thyroid cancer classification using multi-view ultrasound. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2022. Lecture Notes in Computer Science, vol. 13433, pp. 665–674. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_64

    Chapter  Google Scholar 

  13. Zhao, J., et al.: Semantic consistency generative adversarial network for cross-modality domain adaptation in ultrasound thyroid nodule classification. Appl. Intell. 52, 1–15 (2022)

    Article  Google Scholar 

  14. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks (2015)

    Google Scholar 

  15. Zhao, H., et al.: Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6230–6239 (2017)

    Google Scholar 

  16. Chen, L.-C., et al.: Encoder-decoder with Atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision - ECCV 2018. Lecture Notes in Computer Science(), vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  17. Cao, Y., et al.: GCNet: non-local networks meet squeeze-excitation networks and beyond. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 1971–1980 (2019)

    Google Scholar 

  18. Qin, X., Zhang, Z., Huang, C., et al.: U2-Net: going deeper with nested u-structure for salient object detection. Pattern Recogn. 106, 107404 (2020)

    Article  Google Scholar 

  19. Zuiderveld, K.: Contrast limited adaptive histogram equalization. Graph. Gems, 474–485 (1994)

    Google Scholar 

  20. Liu, T., et al.: Automated detection and classification of thyroid nodules in ultrasound images using clinical-knowledge-guided convolutional neural networks. Med. Image Anal. 58, 101555 (2019)

    Article  Google Scholar 

  21. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. (99), 2999–3007 (2017)

    Google Scholar 

  22. Eric, Z., et al.: Lesion attributes segmentation for melanoma detection with multi-task u-net. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 485–488 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honggang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z., Sun, P., Chen, D., Zhang, H., Li, Y. (2024). Predicting Central Cervical Lymph Node Metastasis of Papillary Thyroid Carcinomas Using Multi-view Ultrasound Images. In: Su, R., Zhang, YD., Frangi, A.F. (eds) Proceedings of 2023 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2023). MICAD 2023. Lecture Notes in Electrical Engineering, vol 1166. Springer, Singapore. https://doi.org/10.1007/978-981-97-1335-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1335-6_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1334-9

  • Online ISBN: 978-981-97-1335-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics