Abstract
Thyroid nodule classification in ultrasound images is an important task for central cervical lymph node metastasis (CLNM) of papillary thyroid carcinomas (PTC). In clinical practice, nodules are usually evaluated using thyroid ultrasound from both horizontal and vertical perspectives. Due to the low contrast, high noise, and individual differences of ultrasound images, it has become a challenging problem. To address these, we propose a method to assist in diagnosing CLNM of PTC using multi-view ultrasound images and patient information. Our network consists of two modules, ROI extraction and multi-view classification network. First, we employ the popular semantic segmentation network, U\(^{2}\)-Net, on our clinical dataset and use the results to identify the region of interest (ROI). Then we design the parallel ResNet-50 network to complete the classification task from multi-view information. Experimental results show that our method can provide useful information for clinical diagnosis and lay a technical foundation for the classification of ultrasound images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Precision, Recall, MIoU and Dice are four evaluation metrics for segmentation task.
References
Megwalu, U.C., Moon, P.K.: Thyroid cancer incidence and mortality trends in the united states: 2000–2018. Thyroid 32(5), 560–570 (2022)
Smulever, A., Pitoia, F.: Conservative management of low-risk papillary thyroid carcinoma: a review of the active surveillance experience. Thyroid Res. 16(1), 1–11 (2023)
Yoshida, Y., Horiuchi, K., Okamoto, T.: Patients’ view on the management of papillary thyroid microcarcinoma: active surveillance or surgery. Thyroid 30, 681–687 (2020)
Jiwang, L., et al.: Clinicopathologic factors and preoperative ultrasonographic characteristics for predicting central lymph node metastasis in papillary thyroid microcarcinoma: a single center retrospective study. Braz. J. Otorhinolaryngol. 88(1), 36–45 (2022)
Yang, Y., et al.: Predicting central lymph node metastasis in patients with papillary thyroid carcinoma based on ultrasound radiomic and morphological features analysis. BMC Med. Imaging 23(1), 111 (2023)
Ayaz, H., et al.: A hybrid deep model for brain tumor classification. In: Proceedings of 2021 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2021), pp. 282–291 (2022)
Qin, P., Kuan, W., Yishan, H., et al.: Diagnosis of benign and malignant thyroid nodules using combined conventional ultrasound and ultrasound elasticity imaging. IEEE J. Biomed. Health Inform. 24(4), 1028–1036 (2020)
Liao, X., et al.: Image segmentation of thyroid nodule and capsule for diagnosing central compartment lymph node metastasis. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2765–2768 (2021)
Xiangyu, D., Huan, Z., Yahan, Y.: Ultrasonic image segmentation algorithm of thyroid nodules based on DPCNN. In: Proceedings of 2021 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2021), pp. 163–174 (2022)
Shahroudnejad, A., et al.: Thyroid nodule segmentation and classification using deep convolutional neural network and rule-based classifiers. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 3118–3121 (2021)
Kang, Q., et al.: Thyroid nodule segmentation and classification in ultrasound images through intra- and inter-task consistent learning. Med. Image Anal. 79, 102443 (2022)
Huang, H., et al.: Personalized diagnostic tool for thyroid cancer classification using multi-view ultrasound. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2022. Lecture Notes in Computer Science, vol. 13433, pp. 665–674. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_64
Zhao, J., et al.: Semantic consistency generative adversarial network for cross-modality domain adaptation in ultrasound thyroid nodule classification. Appl. Intell. 52, 1–15 (2022)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks (2015)
Zhao, H., et al.: Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6230–6239 (2017)
Chen, L.-C., et al.: Encoder-decoder with Atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision - ECCV 2018. Lecture Notes in Computer Science(), vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49
Cao, Y., et al.: GCNet: non-local networks meet squeeze-excitation networks and beyond. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 1971–1980 (2019)
Qin, X., Zhang, Z., Huang, C., et al.: U2-Net: going deeper with nested u-structure for salient object detection. Pattern Recogn. 106, 107404 (2020)
Zuiderveld, K.: Contrast limited adaptive histogram equalization. Graph. Gems, 474–485 (1994)
Liu, T., et al.: Automated detection and classification of thyroid nodules in ultrasound images using clinical-knowledge-guided convolutional neural networks. Med. Image Anal. 58, 101555 (2019)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. (99), 2999–3007 (2017)
Eric, Z., et al.: Lesion attributes segmentation for melanoma detection with multi-task u-net. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 485–488 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Liu, Z., Sun, P., Chen, D., Zhang, H., Li, Y. (2024). Predicting Central Cervical Lymph Node Metastasis of Papillary Thyroid Carcinomas Using Multi-view Ultrasound Images. In: Su, R., Zhang, YD., Frangi, A.F. (eds) Proceedings of 2023 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2023). MICAD 2023. Lecture Notes in Electrical Engineering, vol 1166. Springer, Singapore. https://doi.org/10.1007/978-981-97-1335-6_8
Download citation
DOI: https://doi.org/10.1007/978-981-97-1335-6_8
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-1334-9
Online ISBN: 978-981-97-1335-6
eBook Packages: Computer ScienceComputer Science (R0)