Skip to main content

GaitMG: A Multi-grained Feature Aggregate Network for Gait Recognition

  • Conference paper
  • First Online:
Advances in Brain Inspired Cognitive Systems (BICS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14374))

Included in the following conference series:

  • 259 Accesses

Abstract

In order to make better use of the temporal information of gait data and improve the accuracy of gait recognition. In this paper, we propose a multi-grained feature aggregate network(GaitMG), which contains two important modules: Multi-Grained Feature Aggregator(MGFA) and Spatio-Temporal Feature Fusion Module(STFFM). The MGFA: a novel applying of convolution, can tackle the problem of poor representation ability of single grained temporal features. STFFM can fuse the multi-grained temporal features obtained by MGFA, get a discriminative representation. On CASIA-B, our method can achieve rank-1 accuracy of 98.0% under normal walking condition, 94.1% under bag-carrying condition, 85.3% under coat-wearing condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chao, H., He, Y., Zhang, J., Feng, J.: GaitSet: regarding gait as a set for cross-view gait recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8126ā€“8133 (2019)

    Google Scholar 

  2. Chen, R., et al.: Rapid detection of multi-QR codes based on multistage stepwise discrimination and a compressed MobileNet. IEEE Internet Things J. (2023)

    Google Scholar 

  3. Fan, C., et al.: GaitPart: temporal part-based model for gait recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14225ā€“14233 (2020)

    Google Scholar 

  4. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint: arXiv:1703.07737 (2017)

  5. Hong, C., Yu, J., Tao, D., Wang, M.: Image-based three-dimensional human pose recovery by multiview locality-sensitive sparse retrieval. IEEE Trans. Industr. Electron. 62(6), 3742ā€“3751 (2014)

    Google Scholar 

  6. Hou, S., Cao, C., Liu, X., Huang, Y.: Gait lateral network: learning discriminative and compact representations for gait recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision - ECCV 2020. Lecture Notes in Computer Science(), vol. 12354, pp. 382ā€“398. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_22

    Chapter  Google Scholar 

  7. Hou, Z., Li, F., Wang, S., Dai, N., Ma, S., Fan, J.: Video object segmentation based on temporal frame context information fusion and feature enhancement. Appl. Intell. 53(6), 6496ā€“6510 (2023)

    Article  Google Scholar 

  8. Hu, M., Wang, Y., Zhang, Z., Little, J.J., Huang, D.: View-invariant discriminative projection for multi-view gait-based human identification. IEEE Trans. Inf. Forensics Secur. 8(12), 2034ā€“2045 (2013)

    Article  Google Scholar 

  9. Huang, X., et al.: Context-sensitive temporal feature learning for gait recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12909ā€“12918 (2021)

    Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint: arXiv:1412.6980 (2014)

  11. Li, H., et al.: GaitSlice: a gait recognition model based on spatio-temporal slice features. Pattern Recogn. 124, 108453 (2022)

    Article  Google Scholar 

  12. Li, X., Makihara, Y., Xu, C., Yagi, Y., Yu, S., Ren, M.: End-to-end model-based gait recognition. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  13. Li, Y., et al.: CBANet: an end-to-end cross band 2-D attention network for hyperspectral change detection in remote sensing. IEEE Trans. Geosci. Remote Sens. (2023)

    Google Scholar 

  14. Lin, B., Zhang, S., Bao, F.: Gait recognition with multiple-temporal-scale 3D convolutional neural network. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 3054ā€“3062 (2020)

    Google Scholar 

  15. Lin, B., Zhang, S., Yu, X.: Gait recognition via effective global-local feature representation and local temporal aggregation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14648ā€“14656 (2021)

    Google Scholar 

  16. Liu, X., You, Z., He, Y., Bi, S., Wang, J.: Symmetry-driven hyper feature GCN for skeleton-based gait recognition. Pattern Recogn. 125, 108520 (2022)

    Article  Google Scholar 

  17. Ma, P., et al.: Multiscale superpixelwise prophet model for noise-robust feature extraction in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 61, 1ā€“12 (2023)

    Google Scholar 

  18. Qin, H., Chen, Z., Guo, Q., Wu, Q.J., Lu, M.: RPNet: gait recognition with relationships between each body-parts. IEEE Trans. Circuits Syst. Video Technol. 32(5), 2990ā€“3000 (2021)

    Article  Google Scholar 

  19. Takemura, N., Makihara, Y., Muramatsu, D., Echigo, T., Yagi, Y.: Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition. IPSJ Trans. Comput. Vis. Appl. 10, 1ā€“14 (2018)

    Google Scholar 

  20. Wolf, T., Babaee, M., Rigoll, G.: Multi-view gait recognition using 3D convolutional neural networks. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 4165ā€“4169. IEEE (2016)

    Google Scholar 

  21. Wu, H., Tian, J., Fu, Y., Li, B., Li, X.: Condition-aware comparison scheme for gait recognition. IEEE Trans. Image Process. 30, 2734ā€“2744 (2020)

    Article  Google Scholar 

  22. Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: 18th International Conference on Pattern Recognition (ICPRā€™06), vol. 4, pp. 441ā€“444. IEEE (2006)

    Google Scholar 

  23. Zeng, W., Wang, C., Li, Y.: Model-based human gait recognition via deterministic learning. Cogn. Comput. 6, 218ā€“229 (2014)

    Article  Google Scholar 

  24. Zhang, Z., et al.: Gait recognition via disentangled representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4710ā€“4719 (2019)

    Google Scholar 

  25. Zhao, H., et al.: SC2Net: a novel segmentation-based classification network for detection of COVID-19 in chest x-ray images. IEEE J. Biomed. Health Inform. 26(8), 4032ā€“4043 (2022)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (62072122), Key Construction Discipline Scientific Research Capacity Improvement Project of Guangdong Province (No.2021ZDJS025), Postgraduate Education Innovation Plan Project of Guangdong Province (2020SFKC054). The Special Projects in Key Fields of Ordinary Universities of Guangdong Province (2021ZDZX1087) and Guangzhou Science and Technology Plan Project (2023B03 J1327).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Li .

Editor information

Editors and Affiliations

Ethics declarations

Data Availability Statement and Compliance with Ethical Standards

The data that supports the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions. The authors declare that they have no conflict of interest. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wan, J., Zhao, H., Li, R., Chen, R., Wei, T., Ren, Y. (2024). GaitMG: A Multi-grained Feature Aggregate Network for Gait Recognition. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2023. Lecture Notes in Computer Science(), vol 14374. Springer, Singapore. https://doi.org/10.1007/978-981-97-1417-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1417-9_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1416-2

  • Online ISBN: 978-981-97-1417-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics