Skip to main content

Generalized W-Net: Arbitrary-Style Chinese Character Synthesization

  • Conference paper
  • First Online:
Advances in Brain Inspired Cognitive Systems (BICS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14374))

Included in the following conference series:

  • 237 Accesses

Abstract

Synthesizing Chinese characters with consistent style using few stylized examples is challenging. Existing models struggle to generate arbitrary style characters with limited examples. In this paper, we propose the Generalized W-Net, a novel class of W-shaped architectures that addresses this. By incorporating Adaptive Instance Normalization and introducing multi-content, our approach can synthesize Chinese characters in any desired style, even with limited examples. It handles seen and unseen styles during training and can generate new character contents. Experimental results demonstrate the effectiveness of our approach.

K. Huang—This research is funded by XJTLU Research Development Funding 20-02-60. Computational resources utilized in this research are provided by the School of Robotics, XJTLU Entrepreneur College (Taicang), and the School of Advanced Technology, Xi’an Jiaotong-Liverpool University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The input of the W-Net architecture in [9] represents a special case, involving only one single content prototype with a standard font. In most cases, the styles are pre-selected and fixed prior to training or utilization.

  2. 2.

    In the proposed Generalized W-Net and W-Net architecture [9], N can be changed during testing.

  3. 3.

    The generated character will be noted as \(G(x^{c_m}_j,x^i_{s_n})\) for simplicity.

  4. 4.

    The output of the style reference encoder \(Enc_r(x^h_{p_1},x^h_{p_2},...,x^h_{p_L})\) is connected to the Dec using shortcut or residual/dense block connections (see Sect. 3.2).

  5. 5.

    The specific normalization method may vary across implementations (see Sect. 3.3).

  6. 6.

    The encoded outputs will be referred to as \(Enc_p(x^{c_m}_j)\) and \(Enc_r(x^i_{s_n})\).

References

  1. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  2. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)

    Google Scholar 

  3. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  4. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  5. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510 (2017)

    Google Scholar 

  6. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 172–189 (2018)

    Google Scholar 

  7. Jiang, H., Huang, K., Zhang, R.: Field support vector regression. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) Neural Information Processing. ICONIP 2017. LNCS, vol. 10634, pp. 699–708. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70087-8_72

  8. Jiang, H., Huang, K., Zhang, R., Hussain, A.: Style neutralization generative adversarial classifier. In: Ren, J., et al. (eds.) BICS 2018. LNCS (LNAI), vol. 10989, pp. 3–13. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00563-4_1

    Chapter  Google Scholar 

  9. Jiang, H., Yang, G., Huang, K., Zhang, R.: W-Net: one-shot arbitrary-style Chinese character generation with deep neural networks. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11305, pp. 483–493. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04221-9_43

    Chapter  Google Scholar 

  10. Liu, C.L., Yin, F., Wang, D.H., Wang, Q.F.: CASIA online and offline Chinese handwriting databases. In: International Conference on Document Analysis and Recognition (ICDAR), pp. 37–41, September 2011. https://doi.org/10.1109/ICDAR.2011.17

  11. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. arXiv preprint arXiv:1610.09585 (2016)

  12. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  13. Shieh, J.C.: The unified phonetic transcription for teaching and learning Chinese languages. Turk. Online J. Educ. Technol.-TOJET 10(4), 355–369 (2011)

    Google Scholar 

  14. Taigman, Y., Polyak, A., Wolf, L.: Unsupervised cross-domain image generation. arXiv preprint arXiv:1611.02200 (2016)

  15. Yang, X., Huang, K., Zhang, R., Hussain, A.: Learning latent features with infinite nonnegative binary matrix trifactorization. IEEE Trans. Emerg. Top. Comput. Intell. 99, 1–14 (2018)

    Google Scholar 

  16. Zhang, Y., Zhang, Y., Cai, W.: Separating style and content for generalized style transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8447–8455 (2018)

    Google Scholar 

  17. Zhang, Y., Zhang, Y., Cai, W.: A unified framework for generalizable style transfer: style and content separation. arXiv preprint arXiv:1806.05173 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haochuan Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, H., Yang, G., Cheng, F., Huang, K. (2024). Generalized W-Net: Arbitrary-Style Chinese Character Synthesization. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2023. Lecture Notes in Computer Science(), vol 14374. Springer, Singapore. https://doi.org/10.1007/978-981-97-1417-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1417-9_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1416-2

  • Online ISBN: 978-981-97-1417-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics