Skip to main content

LWGSS: Light-Weight Green Spill Suppression for Green Screen Matting

  • Conference paper
  • First Online:
Advances in Brain Inspired Cognitive Systems (BICS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14374))

Included in the following conference series:

  • 217 Accesses

Abstract

Green spill is a significant challenge in green screen matting and it affects the overall visual quality of the images. Due to the limitations of user interaction and the lack of specific datasets containing green spill information, it is difficult to generate high-quality foreground images automatically in green screen matting. In this paper, we propose a light-weight green spill suppression method for green screen matting, named as LWGSS, to generate high-quality foreground images without green spill in a concise way. Specifically, we adopt an anomaly detector to detect the anomalous pixels with green spill, and normalize these pixels through the spill removal module. With the help of the green spill suppression stage, our method can break the limitations of user interaction and specific datasets. Additionally, we switch the learning objectives from predicting the alpha mattes of foregrounds to predict the alpha mattes of background by using label inversion, which enables us to address all kinds of objects. Furthermore, we present a light-weight network with the smallest model size and parameters to further improve the inference speed. Extensive experiments on Composition-1k and Distinctions-646 demonstrate the superiority of our LWGSS.

This work is supported in part by the Guangdong Basic and Applied Basic Research Foundation (nos. 2021A1515011341, 2023A1515012561), and Guangdong Provincial Key Laboratory of Human Digital Twin (2022B1212010004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xu, N., Price, B., Cohen, S., Huang, T.: Deep image matting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2970–2979 (2017)

    Google Scholar 

  2. Ma, P., et al.: Multiscale superpixelwise prophet model for noise-robust feature extraction in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 61, 1–12 (2023)

    Google Scholar 

  3. Li, Y., et al.: Cbanet: an end-to-end cross-band 2-d attention network for hyperspectral change detection in remote sensing. IEEE Trans. Geosci. Remote Sens. 61, 1–11 (2023)

    Google Scholar 

  4. Ma, P., Ren, J., Zhao, H., Sun, G., Murray, P., Zheng, J.: Multiscale 2-d singular spectrum analysis and principal component analysis for spatial-spectral noise-robust feature extraction and classification of hyperspectral images. IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens. 14, 1233–1245 (2021)

    Article  Google Scholar 

  5. Xie, G., Ren, J., Marshall, S., Zhao, H., Li, R., Chen, R.: Self-attention enhanced deep residual network for spatial image steganalysis. Dig. Signal Process. 139, 104063 (2023)

    Article  Google Scholar 

  6. Smith, A.R., Blinn, J.F.: Blue screen matting. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 259–268 (1996)

    Google Scholar 

  7. Aksoy, Y., Aydin, T.O., Pollefeys, M., Smolić, A.: Interactive high-quality green-screen keying via color unmixing. ACM Trans. Graph. (TOG) 36(4), 1 (2016)

    Article  Google Scholar 

  8. Luo, Y.: Color spill suppression in chroma keying. Ph.D. dissertation, Université d’Ottawa/University of Ottawa (2020)

    Google Scholar 

  9. Li, Y., Lu, H.: Natural image matting via guided contextual attention. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, pp. 11 450–11 457 (2020)

    Google Scholar 

  10. Sun, Y., Tang, C.-K., Tai, Y.-W.: Semantic image matting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11 120–11 129 (2021)

    Google Scholar 

  11. Fang, X., Zhang, S.-H., Chen, T., Wu, X., Shamir, A., Hu, S.-M.: User-guided deep human image matting using arbitrary trimaps. IEEE Trans. Image Process. 31, 2040–2052 (2022)

    Article  Google Scholar 

  12. Dai, Y., Lu, H., Shen, C.: Learning affinity-aware upsampling for deep image matting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6841–6850 (2021)

    Google Scholar 

  13. Li, J., Zhang, J., Tao, D.: Deep automatic natural image matting. arXiv preprint arXiv:2107.07235 (2021)

  14. Li, J., Zhang, J., Maybank, S.J., Tao, D.: Bridging composite and real: towards end-to-end deep image matting. Int. J. Comput. Vision 130(2), 246–266 (2022)

    Article  Google Scholar 

  15. Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.: Modnet: real-time trimap-free portrait matting via objective decomposition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 1, pp. 1140–1147 (2022)

    Google Scholar 

  16. Chen, G., et al.: Pp-matting: High-accuracy natural image matting. arXiv preprint arXiv:2204.09433 (2022)

  17. Maul, P.: A deep learning approach to color spill suppression in chroma keying (2019)

    Google Scholar 

  18. Jin, Y., Li, Z., Zhu, D., Shi, M., Wang, Z.: Automatic and real-time green screen keying. Vis. Comput. 38(9–10), 3135–3147 (2022)

    Article  Google Scholar 

  19. Qiao, Y., et al.: Attention-guided hierarchical structure aggregation for image matting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13 676–13 685 (2020)

    Google Scholar 

  20. Chen, Q., Li, D., Tang, C.-K.: KNN matting. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2175–2188 (2013)

    Article  Google Scholar 

  21. Lu, H., Dai, Y., Shen, C., Xu, S.: Indices matter: learning to index for deep image matting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3266–3275 (2019)

    Google Scholar 

  22. Lin, S., Ryabtsev, A., Sengupta, S., Curless, B.L., Seitz, S.M., Kemelmacher-Shlizerman, I.: Real-time high-resolution background matting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8762–8771 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijing Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bai, A., Yang, Z., Qin, J., Shi, Y., Li, K. (2024). LWGSS: Light-Weight Green Spill Suppression for Green Screen Matting. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2023. Lecture Notes in Computer Science(), vol 14374. Springer, Singapore. https://doi.org/10.1007/978-981-97-1417-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1417-9_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1416-2

  • Online ISBN: 978-981-97-1417-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics