Skip to main content

Applications of Deep Learning in Satellite Communication: A Survey

  • Conference paper
  • First Online:
Space Information Networks (SINC 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2057))

Included in the following conference series:

  • 40 Accesses

Abstract

Satellite communication is a key aspect of future 6G networks, and the impact of artificial intelligence technology utilizing deep learning on satellite communications has garnered significant interest. This paper outlines the current research status of deep learning applications in satellite communication from the perspective of the physical layer, data link layer, and network layer. It also examines the limitations of deep learning in satellite communication applications and anticipates potential research directions for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Duan, T., Dinavahi, V.: Starlink space network-enhanced cyber-physical power system. IEEE Trans. Smart Grid 12(4), 3673–3675 (2021)

    Article  Google Scholar 

  2. Wang, Z.J., Du, X.J., Yin, J.W., et al.: Development and prospect of LEO satellite Internet. Appl. Electron. Tech. 46(7), 49–52 (2020)

    Google Scholar 

  3. Wang, P., Zhu, S., Li, C., et al.: Analysis on development of satellite internet standardization. Radio Commun. Technol. 49(5), 1–7 (2023)

    Google Scholar 

  4. Wang, C.T., Zhai, L.J., Xu, X.F.: Development and prospects of space-terrestrial integrated information network. Radio Commun. Technol. 46(5), 493–504 (2020)

    Google Scholar 

  5. Fang, X., Feng, W., Wei, T., et al.: 5G embraces satellites for 6G ubiquitous IoT: basic models for integrated satellite terrestrial networks. IEEE Internet Things J. 8(18), 14399–14417 (2021)

    Article  Google Scholar 

  6. Zhang, S.J., Zhao, X.T., Zhao, Y.F., et al.: Integration of satellite internet and terrestrial networks: integrated mode, frequency usage and application prospects. Radio Commun. Technol. 49(5) (2023)

    Google Scholar 

  7. Sun, Y.H., Peng, M.G.: Low earth orbit satellite communication supporting direct connection with mobile phones: key technologies, recent progress and future directions. Telecommun. Sci. 39(02), 25–36 (2023)

    MathSciNet  Google Scholar 

  8. ITU-R, Workshop on “IMT for 2030 and beyond”. https://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2030/Pages/default.aspx

  9. Xiao, Z., et al.: LEO satellite access network (LEO-SAN) towards 6G: challenges and approaches. IEEE Wirel. Commun. 1–8 (2022)

    Google Scholar 

  10. Azari, M.M., Solanki, S., Chatzinotas, S., et al.: Evolution of non-terrestrial networks from 5G to 6G: a survey. IEEE Commun. Surv. Tutor. 24(4), 2633–2672 (2022)

    Article  Google Scholar 

  11. Fourati, F., Alouini, M.S.: Artificial intelligence for satellite communication: a review. Intell. Converg. Netw. 2(3), 213–243 (2021)

    Article  Google Scholar 

  12. Wang, X., Shen, W., Xing, C., et al.: Joint Bayesian channel estimation and data detection for OTFS systems in LEO satellite communications. IEEE Trans. Commun. 70(7), 4386–4399 (2020)

    Article  Google Scholar 

  13. Yan, W.K., Yan, Y., Fan, Y.N., Yao, X.J., Gao, X., Sun, W.: A modulation recognition algorithm based on wavelet transform entropy and high-order cumulant for satellite signal modulation. Chin. J. Space Sci. 241(6), 968–975 (2021). (in Chinese)

    Article  Google Scholar 

  14. Li, J., Tang, X., Gao, L., Chen, L.: Satellite communication anti-jamming based on artificial bee colony blind source separation. In: 2021 6th International Conference on Communication, Image and Signal Processing (CCISP), pp. 240–244 (2021)

    Google Scholar 

  15. Subramanian, V., Karunamurthy, J.V., Ramachandran, B.: Hardware doppler shift emulation and compensation for LoRa LEO satellite communication. In: 2023 International Conference on IT Innovation and Knowledge Discovery (ITIKD), pp. 1–6 (2023)

    Google Scholar 

  16. Kang, M.J., Lee, J.H., Chae, S.H.: Channel estimation with DnCNN in massive MISO LEO satellite systems. In: 2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 825–827(2023)

    Google Scholar 

  17. Zhang, Y., Wu, Y., Liu, A., et al.: Deep learning-based channel prediction for LEO satellite massive MIMO communication system. IEEE Wirel. Commun. Lett. 10(8), 1835–1839 (2021)

    Article  Google Scholar 

  18. Güven, E., Kurt, G.K.: CNN-aided channel and carrier frequency offset estimation for HAPS-LEO links. In: 2022 IEEE Symposium on Computers and Communications (ISCC), pp. 1–6 (2022)

    Google Scholar 

  19. Zha, X., Peng, H., Qin, X., Li, T.Y., Li, G.: Satellite amplitude-phase signals modulation identification and demodulation algorithm based on the cyclic neural network. Acta Electron. Sin. 11(47), 2443–2448 (2019)

    Google Scholar 

  20. Ren, J., Ji, L.B., Dang, L.: Satellite signal modulation recognition algorithm based on deep learning. Radio Eng. 52(4), 529–535 (2022)

    Google Scholar 

  21. Han, C., Huo, L., Tong, X., et al.: Spatial anti-jamming scheme for internet of satellites based on the deep reinforcement learning and stackelberg game. IEEE Trans. Veh. Technol. 69(5), 5331–5342 (2020)

    Article  Google Scholar 

  22. Li, H., Liu, Y., Shi, J., Zhou, Y., Zhuo, R., Li, S.: Multimodal LSTM forecasting for LEO satellite communication terminal access. In: 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), pp. 1–5 (2023)

    Google Scholar 

  23. Liao, X., Hu, X., Liu, Z., et al.: Distributed intelligence: a verification for multi-agent DRL based multibeam satellite resource allocation. IEEE Commun. Lett. 42(12), 2785–2789 (2020)

    Article  Google Scholar 

  24. Wu, X.W., Ling, X., Zhu, L.D.: Access and mobility management technologies for 6G satellite communications network. Telecommun. Sci. 37(06), 78–90 (2021)

    Google Scholar 

  25. Jiang, Z., Li, W., Wang, X., et al.: A LEO satellite handover strategy based on graph and multiobjective multiagent path finding. Int. J. Aerosp. Eng. 2023, 1–16 (2023)

    Google Scholar 

  26. Hu, X., Zhang, Y., Liao, X., et al.: Dynamic beam hopping method based on multi-objective deep reinforcement learning for next generation satellite broadband systems. IEEE Trans. Broadcast. 66(3), 630–646 (2020)

    Article  Google Scholar 

  27. Li, X., Zhang, H., Zhou, H., et al.: Multi-agent DRL for resource allocation and cache design in terrestrial-satellite networks. IEEE Trans. Wireless Commun. 22(8), 5031–5042 (2023)

    Article  Google Scholar 

  28. Ma, S., Hu, X., Liao, X., Wang, W.: Deep reinforcement learning for dynamic bandwidth allocation in multi-beam satellite systems. In: 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS), pp. 955–959 (2021)

    Google Scholar 

  29. Makki, B., Chitti, K., Behravan, A., et al.: A survey of NOMA: current status and open research challenges. IEEE Open J. Commun. Soc. 1, 179–189 (2020)

    Article  Google Scholar 

  30. Zhu, X., Jiang, C., Kuang, L., et al.: Non-orthogonal multiple access based integrated terrestrial-satellite networks. IEEE J. Sel. Areas Commun. 35(10), 2253–2267 (2017)

    Article  Google Scholar 

  31. Zhang, Q., An, K., Yan, X., et al.: User pairing for delay-limited NOMA-based satellite networks with deep reinforcement learning. Sensors 23(16), 7062 (2023)

    Article  Google Scholar 

  32. Lee, J.H., Seo, H., Park, J., et al.: Learning emergent random access protocol for LEO satellite networks. IEEE Trans. Wireless Commun. 22(1), 257–269 (2023)

    Article  Google Scholar 

  33. Yang, J., Xiao, Z., Cui, H., et al.: DQN-ALrM-based intelligent handover method for satellite-ground integrated network. IEEE Trans. Cogn. Commun. Netw. 9(4), 977–990 (2023)

    Article  Google Scholar 

  34. Wang, J., Mu, W., Liu, Y., Guo, L., Zhang, S., Gui, G.: Deep reinforcement learning-based satellite handover scheme for satellite communications. In: 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–6 (2021)

    Google Scholar 

  35. Leng, T., Xu, Y., Cui, G., et al.: Caching-aware intelligent handover strategy for LEO satellite networks. Remote Sens. 13(11), 22–30 (2021)

    Article  Google Scholar 

  36. Xu, H., Li, D., Liu, M., et al.: QoE-driven intelligent handover for user-centric mobile satellite networks. IEEE Trans. Veh. Technol. 69(9), 10127–10139 (2020)

    Article  Google Scholar 

  37. Lei, L., Lagunas, E., Yuan, Y., Kibria, M.G., Chatzinotas, S., Ottersten, B.: Deep learning for beam hopping in multibeam satellite systems. In: 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), pp. 1–5 (2020)

    Google Scholar 

  38. Cao, X., Li, Y., Xiong, X., et al.: Dynamic routings in satellite networks: an overview. Sensors 22(12), 45–52 (2022)

    Article  Google Scholar 

  39. Liu, Y., Yu, J.J.Q., Kang, J., et al.: Privacy-preserving traffic flow prediction: a federated learning approach. IEEE Internet Things J. 7(8), 7751–7763 (2020)

    Article  Google Scholar 

  40. Wu, G., Luo, Q., Zhu, Y., et al.: Flexible task scheduling in data relay satellite networks. IEEE Trans. Aerosp. Electron. Syst. 58(2), 1055–1068 (2022)

    Article  Google Scholar 

  41. Liu, D., Zhang, J., Cui, J., et al.: Deep learning aided routing for space-air-ground integrated networks relying on real satellite, flight, and shipping data. IEEE Wirel. Commun. 29(2), 177–184 (2022)

    Article  Google Scholar 

  42. Wang, F., Jiang, D., Wang, Z., et al.: Fuzzy-CNN based multi-task routing for integrated satellite-terrestrial networks. IEEE Trans. Veh. Technol. 71(2), 1913–1926 (2023)

    Article  Google Scholar 

  43. Wan, X., Fu, X., Li, J., et al.: Research on satellite traffic classification based on deep packet recognition and convolution neural network. In: 2023 8th International Conference on Computer and Communication Systems (ICCCS), pp. 494–498 (2023)

    Google Scholar 

  44. Zhu, F., Liu, L., Lin, T.: An LSTM-based traffic prediction algorithm with attention mechanism for satellite network. In: Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition, pp. 205–209 (2020)

    Google Scholar 

  45. Zhang, S., Liu, A., Han, C., et al.: Multi-agent reinforcement learning-based orbital edge offloading in SAGIN supporting internet of remote things. IEEE Internet Things J. 10(23), 20472–20483 (2023)

    Article  Google Scholar 

  46. Lan, W., Chen, K., Li, Y., et al.: Deep Reinforcement Learning for Privacy-Preserving Task Offloading in Integrated Satellite-Terrestrial Networks. arXiv (2023). http://arxiv.org/abs/2306.17183

  47. Zhan, H., Xi, S., Jiang, H., et al.: Resource allocation and offloading strategy for UAV-assisted LEO satellite edge computing. Drones 7(6), 383 (2023)

    Article  Google Scholar 

  48. Han, D., Ye, Q., Peng, H., et al.: Two-timescale learning-based task offloading for remote IoT in integrated satellite-terrestrial networks. IEEE Internet Things J. 10(12), 10131–10145 (2023)

    Article  Google Scholar 

  49. Luo, X., Chen, H.H., Guo, Q.: Semantic communications: overview, open issues, and future research directions. IEEE Wirel. Commun. 29(1), 210–219 (2022)

    Article  Google Scholar 

  50. Dai, J., Zhang, P., Niu, K., et al.: Communication beyond transmitting bits: semantics-guided source and channel coding. IEEE Wirel. Commun. 4, 170–177 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanzhi He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, Y., Sheng, B., Li, Y., Wang, C., Chen, X., Liu, J. (2024). Applications of Deep Learning in Satellite Communication: A Survey. In: Yu, Q. (eds) Space Information Networks. SINC 2023. Communications in Computer and Information Science, vol 2057. Springer, Singapore. https://doi.org/10.1007/978-981-97-1568-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1568-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1567-1

  • Online ISBN: 978-981-97-1568-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics