Skip to main content

Energy-Constrained Model Pruning for Efficient In-Orbit Object Detection in Optical Remote Sensing Images

  • Conference paper
  • First Online:
Space Information Networks (SINC 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2057))

Included in the following conference series:

  • 42 Accesses

Abstract

Efficient object detection from optical remote sensing (RS) images has always been an important interpretation task for in-orbit RS applications. In recent years, convolutional neural networks have been widely used for object detection with significantly improved detection accuracy. However, the large detection models pose great challenges for the computing, memory and energy supply of resource-constrained in-orbit platforms. In this paper, we propose an efficient in-orbit object detection method with low memory, computation and energy requirements. The proposed method first integrates the compact modules of GhostNet into the detector and further performs the L1-norm based filter pruning to significantly reduce model size and computational complexity. Besides, we propose to use energy as a key metric in filter pruning, and present a novel energy-guided layer-wise pruning rate estimation method so as to achieve energy-efficient object detection. Comprehensive experiments have shown the effectiveness of the proposed method in terms of model size, computational complexity, latency and energy consumption, while maintaining comparable detection accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Dong, Z., Wang, M., Wang, Y., Zhu, Y., Zhang, Z.: Object detection in high resolution remote sensing imagery based on convolutional neural networks with suitable object scale features. IEEE Trans. Geosci. Remote Sens. 58, 2104–2114 (2020)

    Article  Google Scholar 

  2. Yu, D., Ji, S.: A new spatial-oriented object detection framework for remote sensing images. IEEE Trans. Geosci. Remote Sens. 60, 1–16 (2022)

    Google Scholar 

  3. Xu, Z., Rao, M.: Multiscale information fusion-based deep learning framework for campus vehicle detection. Int. J. Image Data Fusion 12, 83–97 (2021)

    Article  Google Scholar 

  4. Liu, J., Xiang, J., Jin, Y., Liu, R., Yan, J., Wang, L.: Boost precision agriculture with unmanned aerial vehicle remote sensing and edge intelligence: a survey. Remote Sens. 13 (2021)

    Google Scholar 

  5. Zhang, Z., Qu, Z., Liu, S., Li, D., Cao, J., Xie, G.: Expandable on-board real-time edge computing architecture for Luojia3 intelligent remote sensing satellite. Remote Sens. 14, 3596 (2022)

    Article  Google Scholar 

  6. Ren, F., Li, Y., Zheng, Z., Yan, H., Du, Q.: Online emergency mapping based on disaster scenario and data integration. Int. J. Image Data Fusion 12, 282–300 (2021)

    Article  Google Scholar 

  7. Cheng, Y., Wang, D., Zhou, P., Zhang, T.: Model compression and acceleration for deep neural networks: the principles, progress, and challenges. IEEE Signal Process. Mag. 35, 126–136 (2018)

    Article  Google Scholar 

  8. Choudhary, T., Mishra, V., Goswami, A., Sarangapani, J.: A comprehensive survey on model compression and acceleration. Artif. Intell. Rev. 53, 5113–5155 (2020)

    Article  Google Scholar 

  9. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861 (2017)

    Google Scholar 

  10. Sandler, M., Howard, A., Zhu, M.L., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks (2018)

    Google Scholar 

  11. Zhang, X., Zhou, X.Y., Lin, M.X., Sun, R.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices (2018)

    Google Scholar 

  12. Howard, A., et al.: Searching for MobileNetV3, pp. 1314–1324 (2019)

    Google Scholar 

  13. Wu, B., et al.: FBNet: hardware-aware efficient ConvNet design via differentiable neural architecture search (2019)

    Google Scholar 

  14. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20 (2019)

    Google Scholar 

  15. He, X., Zhao, K.Y., Chu, X.W.: AutoML: a survey of the state-of-the-art. Knowl.-Based Syst. 212 (2021)

    Google Scholar 

  16. Li, Z.S., et al.: A compression pipeline for one-stage object detection model. J. Real-Time Image Proc. 18, 1949–1962 (2021)

    Article  Google Scholar 

  17. Miao, T., et al.: An improved lightweight RetinaNet for ship detection in SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 15, 4667–4679 (2022)

    Article  Google Scholar 

  18. Pang, Y., Zhang, Y., Wang, Y., Wei, X., Chen, B.: SOCNet: a lightweight and fine-grained object recognition network for satellite on-orbit computing. IEEE Trans. Geosci. Remote Sens. 60, 1–13 (2022)

    Google Scholar 

  19. Li, L., Zhang, S., Wu, J.: Efficient object detection framework and hardware architecture for remote sensing images. Remote Sens. 11, 2376 (2019)

    Article  Google Scholar 

  20. Pang, J., Li, C., Shi, J., Xu, Z., Feng, H.: R2-CNN: fast tiny object detection in large-scale remote sensing images. IEEE Trans. Geosci. Remote Sens. 57, 5512–5524 (2019)

    Article  Google Scholar 

  21. Hong, Q., et al.: A lightweight model for wheat ear fusarium head blight detection based on RGB images. Remote Sens. 14, 3481 (2022)

    Article  Google Scholar 

  22. Deng, G.C., et al.: A low coupling and lightweight algorithm for ship detection in optical remote sensing images. IEEE Geosci. Remote Sens. Lett. 19 (2022)

    Google Scholar 

  23. Zhong, C.L., Mu, X.D., He, X.C., Wang, J.X., Zhu, M.: SAR target image classification based on transfer learning and model compression. IEEE Geosci. Remote Sens. Lett. 16, 412–416 (2019)

    Article  Google Scholar 

  24. Ma, X.J., Ji, K.F., Xiong, B.L., Zhang, L.B., Feng, S.J., Kuang, G.Y.: Light-YOLOv4: an edge-device oriented target detection method for remote sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 10808–10820 (2021)

    Article  Google Scholar 

  25. Xue, W., Qi, J.H., Shao, G.Q., Xiao, Z.X., Zhang, Y., Zhong, P.: Low-rank approximation and multiple sparse constraint modeling for infrared low-flying fixed-wing UAV detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 4150–4166 (2021)

    Article  Google Scholar 

  26. Wei, X., Liu, W.C., Chen, L., Ma, L., Chen, H., Zhuang, Y.: FPGA-based hybrid-type implementation of quantized neural networks for remote sensing applications. Sensors 19 (2019)

    Google Scholar 

  27. Zhang, R.Y., Jiang, X.J., An, J.S., Cui, T.S.: Data-free low-bit quantization for remote sensing object detection. IEEE Geosci. Remote Sens. Lett. 19 (2022)

    Google Scholar 

  28. Chen, J.Z., Wang, S.H., Chen, L., Cai, H.B., Qian, Y.T.: Incremental detection of remote sensing objects with feature pyramid and knowledge distillation. IEEE Trans. Geosci. Remote Sens. 60 (2022)

    Google Scholar 

  29. Yang, Y.R., Sun, X., Diao, W.H., Yin, D.S., Yang, Z.J., Li, X.M.: Statistical sample selection and multivariate knowledge mining for lightweight detectors in remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 60 (2022)

    Google Scholar 

  30. Zhang, Y.D., Yan, Z.Y., Sun, X., Diao, W.H., Fu, K., Wang, L.: Learning efficient and accurate detectors with dynamic knowledge distillation in remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 60 (2022)

    Google Scholar 

  31. Zhang, F., Liu, Y.B., Zhou, Y.S., Yin, Q., Li, H.C.: A lossless lightweight CNN design for SAR target recognition. Remote Sens. Lett. 11, 485–494 (2020)

    Article  Google Scholar 

  32. Guo, C., Wang, X., Zhong, Z., Song, J.: Research advance on neural network lightweight for energy optimization. Chin. J. Comput. 46, 85–102 (2023)

    Google Scholar 

  33. Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: GhostNet: more features from cheap operations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1580–1589 (2020)

    Google Scholar 

  34. Zheng, Y., Zhang, D., Xie, S., Lu, J., Zhou, J.: Rotation-robust intersection over union for 3D object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) Computer Vision – ECCV 2020. LNCS, vol. 12365, pp. 464–480. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_28

    Chapter  Google Scholar 

  35. Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-IoU loss: faster and better learning for bounding box regression. In: AAAI Conference on Artificial Intelligence, vol. 34, pp. 12993–13000 (2020)

    Google Scholar 

  36. Xie, X., Lin, J., Wang, Z., Wei, J.: An efficient and flexible accelerator design for sparse convolutional neural networks. IEEE Trans. Circuits Syst. I-Regul. Pap. 68, 2936–2949 (2021)

    Article  Google Scholar 

  37. Luo, J.-H., Wu, J., Lin, W.: ThiNet: a filter level pruning method for deep neural network compression. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 5068–5076. IEEE (2017)

    Google Scholar 

  38. He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via geometric median for deep convolutional neural networks acceleration. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2019), pp. 4335–4344 (2019)

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China under Grant 41901376, Hubei Provincial Natural Science Foundation of China under Grant 2022CFB989, and Foundation for the National Key Laboratory under Grant 6142217210503, and China University of Geosciences (Wuhan) Teaching Laboratory Open Foundation SKJ2022230.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohua Qiu .

Editor information

Editors and Affiliations

Ethics declarations

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qiu, S., Chen, D., Xu, X., Liu, J. (2024). Energy-Constrained Model Pruning for Efficient In-Orbit Object Detection in Optical Remote Sensing Images. In: Yu, Q. (eds) Space Information Networks. SINC 2023. Communications in Computer and Information Science, vol 2057. Springer, Singapore. https://doi.org/10.1007/978-981-97-1568-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1568-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1567-1

  • Online ISBN: 978-981-97-1568-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics