Skip to main content

BK-Editer: Body-Keeping Text-Conditioned Real Image Editing

  • Conference paper
  • First Online:
Computational Visual Media (CVM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14592))

Included in the following conference series:

  • 107 Accesses

Abstract

With the firestorm of generative macromodelling, text-conditional image editing is a recently emerged and highly useful task with an unlimited future. Although a lot of research progress has been made, most of the methods still fail to achieve editing under body-shape preservation, i.e., they cannot generate results that conform to the semantics of the editing prompt while preserving the body-shape of the original image subject. To address this great challenge, we propose BK-Editer, a method that achieves satisfactory body-shape preservation and accomplishes editing under body shape preservation, which solves two major problems: 1) the edited result matches the corresponding editing prompt, and 2) the edited subject’s body shape is largely the same as the original subject’s body shape. In addition, our method does not require time-consuming training on a large-scale dataset and is a self-supervised method.

This work is supported by Shenzhen Science and Technology Innovation Commission (JSGG20220831105002004, JCYJ20200109114835623).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Abdal, R., Qin, Y., Wonka, P.: Image2stylegan++: how to edit the embedded images? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8296–8305 (2020)

    Google Scholar 

  2. Abdal, R., Zhu, P., Mitra, N.J., Wonka, P.: Styleflow: attribute-conditioned exploration of stylegan-generated images using conditional continuous normalizing flows. ACM Trans. Graph. 40(3), 21:1–21:21 (2021)

    Google Scholar 

  3. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019)

    Google Scholar 

  4. Brooks, T., Holynski, A., Efros, A.A.: Instructpix2pix: learning to follow image editing instructions. arXiv preprint arXiv:2211.09800 (2022)

  5. Cao, M., Wang, X., Qi, Z., Shan, Y., Qie, X., Zheng, Y.: Masactrl: tuning-free mutual self-attention control for consistent image synthesis and editing. arXiv preprint arXiv:2304.08465 (2023)

  6. Chefer, H., Alaluf, Y., Vinker, Y., Wolf, L., Cohen-Or, D.: Attend-and-excite: attention-based semantic guidance for text-to-image diffusion models. arXiv preprint arXiv:2301.13826 (2023)

  7. Crowson, K. et al.: VQGAN-CLIP: open domain image generation and editing with natural language guidance. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022, ECCV 2022. LNCS, vol. 13697, pp. 88–105. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19836-6_6

  8. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. NeurIPS 34, 8780–8794 (2021)

    Google Scholar 

  9. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: CVPR, pp. 12873–12883 (2021)

    Google Scholar 

  10. Gal, R., et al.: An image is worth one word: personalizing text-to-image generation using textual inversion. arXiv preprint arXiv:2208.01618 (2022)

  11. Gu, S., et al.: Vector quantized diffusion model for text-to-image synthesis. In: CVPR, pp. 10696–10706 (2022)

    Google Scholar 

  12. Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-Or, D.: Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626 (2022)

  13. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. NeurIPS 33, 6840–6851 (2020)

    Google Scholar 

  14. Ho, J., Salimans, T.: Classifier-free diffusion guidance. In: NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications (2021)

    Google Scholar 

  15. Huberman-Spiegelglas, I., Kulikov, V., Michaeli, T.: An edit friendly DDPM noise space: Inversion and manipulations. arXiv preprint arXiv:2304.06140 (2023)

  16. Karras, T., Aittala, M., Laine, S., Härkönen, E., Hellsten, J., Lehtinen, J., Aila, T.: Alias-free generative adversarial networks. Adv. Neural. Inf. Process. Syst. 34, 852–863 (2021)

    Google Scholar 

  17. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2019)

    Google Scholar 

  18. Kawar, B., et al.: Imagic: text-based real image editing with diffusion models. arXiv preprint arXiv:2210.09276 (2022)

  19. Kirillov, A., et al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)

  20. Kumari, N., Zhang, B., Zhang, R., Shechtman, E., Zhu, J.Y.: Multi-concept customization of text-to-image diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023)

    Google Scholar 

  21. Li, B., Qi, X., Lukasiewicz, T., Torr, P.: Controllable text-to-image generation. In: NeurIPS, vol. 32 (2019)

    Google Scholar 

  22. Li, B., Qi, X., Lukasiewicz, T., Torr, P.H.: Manigan: text-guided image manipulation. In: CVPR, pp. 7880–7889 (2020)

    Google Scholar 

  23. Meng, C., Song, Y., Song, J., Wu, J., Zhu, J.Y., Ermon, S.: Sdedit: image synthesis and editing with stochastic differential equations. arXiv preprint arXiv:2108.01073 (2021)

  24. Mou, C., et al.: T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion models. arXiv preprint arXiv:2302.08453 (2023)

  25. Nam, S., Kim, Y., Kim, S.J.: Text-adaptive generative adversarial networks: manipulating images with natural language. In: NeurIPS, vol. 31 (2018)

    Google Scholar 

  26. Nichol, A., et al.: Glide: towards photorealistic image generation and editing with text-guided diffusion models. arXiv preprint arXiv:2112.10741 (2021)

  27. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: ICML, pp. 8162–8171. PMLR (2021)

    Google Scholar 

  28. Parmar, G., Singh, K.K., Zhang, R., Li, Y., Lu, J., Zhu, J.Y.: Zero-shot image-to-image translation. arXiv preprint arXiv:2302.03027 (2023)

  29. Patashnik, O., Wu, Z., Shechtman, E., Cohen-Or, D., Lischinski, D.: Styleclip: text-driven manipulation of stylegan imagery. In: ICCV, pp. 2085–2094 (2021)

    Google Scholar 

  30. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  31. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  32. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125 (2022)

  33. Ramesh, A., et al.: Zero-shot text-to-image generation. In: ICML, pp. 8821–8831. PMLR (2021)

    Google Scholar 

  34. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. In: ICML, pp. 1060–1069. PMLR (2016)

    Google Scholar 

  35. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR, pp. 10684–10695 (2022)

    Google Scholar 

  36. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models (2021)

    Google Scholar 

  37. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  38. Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: Dreambooth: fine tuning text-to-image diffusion models for subject-driven generation. arXiv preprint arXiv:2208.12242 (2022)

  39. Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. In: Advances in Neural Information Processing Systems (2022)

    Google Scholar 

  40. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502 (2020)

  41. Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data distribution. In: NeurIPS, vol. 32 (2019)

    Google Scholar 

  42. Tao, M., Tang, H., Wu, F., Jing, X.Y., Bao, B.K., Xu, C.: DF-GAN: a simple and effective baseline for text-to-image synthesis. In: CVPR, pp. 16515–16525 (2022)

    Google Scholar 

  43. Tumanyan, N., Geyer, M., Bagon, S., Dekel, T.: Plug-and-play diffusion features for text-driven image-to-image translation. arXiv preprint arXiv:2211.12572 (2022)

  44. Wei, Y., Zhang, Y., Ji, Z., Bai, J., Zhang, L., Zuo, W.: Elite: encoding visual concepts into textual embeddings for customized text-to-image generation (2023)

    Google Scholar 

  45. Xia, W., Yang, Y., Xue, J.H., Wu, B.: Tedigan: text-guided diverse face image generation and manipulation. In: CVPR, pp. 2256–2265 (2021)

    Google Scholar 

  46. Xiao, G., Yin, T., Freeman, W.T., Durand, F., Han, S.: FastComposer: tuning-free multi-subject image generation with localized attention. arXiv preprint arXiv:2305.10431 (2023)

  47. Xu, T., et al.: Attngan: fine-grained text to image generation with attentional generative adversarial networks. In: CVPR, pp. 1316–1324 (2018)

    Google Scholar 

  48. Yu, J., et al.: Scaling autoregressive models for content-rich text-to-image generation. arXiv preprint arXiv:2206.10789 (2022)

  49. Zhang, H., Koh, J.Y., Baldridge, J., Lee, H., Yang, Y.: Cross-modal contrastive learning for text-to-image generation. In: CVPR, pp. 833–842 (2021)

    Google Scholar 

  50. Zhang, H., et al.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: ICCV, pp. 5907–5915 (2017)

    Google Scholar 

  51. Zhang, H., et al.: Stackgan++: realistic image synthesis with stacked generative adversarial networks. IEEE TPAMI 41(8), 1947–1962 (2018)

    Article  Google Scholar 

  52. Zhang, L., Agrawala, M.: Adding conditional control to text-to-image diffusion models. arXiv preprint arXiv:2302.05543 (2023)

  53. Zhu, M., Pan, P., Chen, W., Yang, Y.: DM-GAN: dynamic memory generative adversarial networks for text-to-image synthesis. In: CVPR, pp. 5802–5810 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shifeng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, J., Liu, Y., Shi, L., Qin, J., Chen, S. (2024). BK-Editer: Body-Keeping Text-Conditioned Real Image Editing. In: Zhang, FL., Sharf, A. (eds) Computational Visual Media. CVM 2024. Lecture Notes in Computer Science, vol 14592. Springer, Singapore. https://doi.org/10.1007/978-981-97-2095-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2095-8_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2094-1

  • Online ISBN: 978-981-97-2095-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics