Skip to main content

APFL: Active-Passive Forgery Localization for Medical Images

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14648))

Included in the following conference series:

  • 94 Accesses

Abstract

Medical image forgery has become an urgent issue in academia and medicine. Unlike natural images, images in the medical field are so sensitive that even minor manipulation can produce severe consequences. Existing forgery localization methods often rely on a single image attribute and suffer from poor generalizability and low accuracy. To this end, we propose a novel active-passive forgery localization (APFL) algorithm to locate the forgery region of medical images attacked by three common forgeries: splicing, copy-move and removal. It involves two modules: a) active forgery localization, we utilize reversible watermarking to locate the fuzzy forgery region, and b) passive forgery localization, we train a lightweight model named KDU-Net through knowledge distillation to precisely locate the forgery region in the fuzzy localization result extracted by active forgery localization. The lightweight KDU-Net as a student model can achieve similar performance to RRU-Net as a teacher model, while its model capacity is only \( 24.6\%\) of RRU-Net, which facilitates fast inference for medical diagnostic devices with limited computational power. Since there are no publicly available medical tampered datasets, we manually produce tampered medical images from the real-world Ophthalmic Image Analysis (OIA) fundus image dataset. The experimental results present that APFL achieves satisfied forgery localization accuracy under the three common forgeries and shows robustness to rotation and scaling post-processing attacks.

Supported in part by the National Science Foundation of China under Grant 62272252 and Grant 62272253, the Science and Technology Development Plan of Tianjin under Grant 20JCZDJC00610 and Grant 19YFZCSF00900, the Key Research and Development Program of Guangdong under Grant 2021B0101310002, Foundation of State Key Laboratory of Public Big Data (No. PBD2022-12) and the Fundamental Research Funds for the Central Universities.

First Author and Second Author contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/nkicsl/OIA.

References

  1. Ansari, I.A., et al.: SVD based fragile watermarking scheme for tamper localization and self-recovery. Int. J. Mach. Learn. Cybern. 7, 1225–1239 (2016)

    Article  Google Scholar 

  2. Ardizzone, E., et al.: Copy-move forgery detection by matching triangles of keypoints. IEEE Trans. Inf. Forensics Secur. 10(10), 2084–2094 (2015)

    Article  Google Scholar 

  3. Arun Anoop, M., Poonkuntran, S.: LPG: a novel approach for medical forgery detection in image transmission. J. Ambient. Intell. Humaniz. Comput. 12(5), 4925–4941 (2021)

    Article  Google Scholar 

  4. Bi, X., et al.: Rru-net: The ringed residual u-net for image splicing forgery detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. pp. 0–0 (2019)

    Google Scholar 

  5. Bik, E.M., et al.: The prevalence of inappropriate image duplication in biomedical research publications. MBio 7(3), 16 (2016)

    Article  Google Scholar 

  6. Castillo Camacho, I., et al.: A comprehensive review of deep-learning-based methods for image forensics. J. Imaging 7(4), 69 (2021)

    Article  Google Scholar 

  7. Coatrieux, G., et al.: Reversible watermarking based on invariant image classification and dynamic histogram shifting. IEEE Trans. Inf. Forensics Secur. 8(1), 111–120 (2012)

    Article  Google Scholar 

  8. Feng, B., et al.: A reversible watermark with a new overflow solution. IEEE Access 7, 28031–28043 (2018)

    Article  Google Scholar 

  9. Fridrich, J.: Detection of copy-move forgery in digital images. In: Proceedings of Digital Forensic Research Workshop, vol. 2003 (2003)

    Google Scholar 

  10. Ghoneim, A., et al.: Medical image forgery detection for smart healthcare. IEEE Commun. Mag. 56(4), 33–37 (2018)

    Article  Google Scholar 

  11. Hinton, G., et al.: Distilling the knowledge in a neural network. Comput. Sci. 14(7), 38–39 (2015)

    Google Scholar 

  12. Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 2010 20th International Conference on Pattern Recognition, pp. 2366–2369. IEEE (2010)

    Google Scholar 

  13. Hsu, C.S., Tu, S.F.: Digital watermarking scheme for copyright protection and tampering detection. Int. J. Inf. Technol. Secur. 11(1) (2019)

    Google Scholar 

  14. Ishtiaq, M., et al.: Hybrid predictor based four-phase adaptive reversible watermarking. IEEE Access 6, 13213–13230 (2018)

    Article  Google Scholar 

  15. Lei, B., et al.: Reversible watermarking scheme for medical image based on differential evolution. Expert Syst. Appl. 41(7), 3178–3188 (2014)

    Article  Google Scholar 

  16. Liu, B., Pun, C.M.: Deep fusion network for splicing forgery localization. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)

    Google Scholar 

  17. Long, J., et al.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  18. Luo, L., et al.: Reversible image watermarking using interpolation technique. IEEE Trans. Inf. Forensics Secur. 5(1), 187–193 (2009)

    Google Scholar 

  19. Luo, W., et al.: Robust detection of region-duplication forgery in digital image. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 4, pp. 746–749. IEEE (2006)

    Google Scholar 

  20. Rao, Y., Ni, J.: A deep learning approach to detection of splicing and copy-move forgeries in images. In: 2016 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2016)

    Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, MICCAI 2015. LNCS, vol. 9351, pp 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  22. Sharma, S., Ghanekar, U.: A rotationally invariant texture descriptor to detect copy move forgery in medical images. In: 2015 IEEE International Conference on Computational Intelligence & Communication Technology, pp. 795–798. IEEE (2015)

    Google Scholar 

  23. Shi, J., Wang, G., Su, M., Liu, X.: Effective medical image copy-move forgery localization based on texture descriptor. In: Goel, S., Gladyshev, P., Johnson, D., Pourzandi, M., Majumdar, S. (eds.) Digital Forensics and Cyber Crime. ICDF2C 2020. LNICS, Social Informatics and Telecommunications Engineering, vol. 351, pp. 62–77. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68734-2_4

  24. Suganya, D., et al.: Copy-move forgery detection of medical images using most valuable player based optimization. Sens. Imaging 22(1), 1–18 (2021)

    Article  MathSciNet  Google Scholar 

  25. Thabit, R., Khoo, B.E.: A new robust lossless data hiding scheme and its application to color medical images. Digit. Sig. Process. 38, 77–94 (2015)

    Article  Google Scholar 

  26. Thodi, D.M., Rodríguez, J.J.: Expansion embedding techniques for reversible watermarking. IEEE Trans. Image Process. 16(3), 721–730 (2007)

    Article  MathSciNet  Google Scholar 

  27. Ulutas, G., et al.: Medical image tamper detection based on passive image authentication. J. Digit. Imaging 30(6), 695–709 (2017)

    Article  Google Scholar 

  28. Wang, W., et al.: Effective image splicing detection based on image chroma. In: ICIP, pp. 1257–1260. IEEE (2009)

    Google Scholar 

  29. Wei, Y., et al.: C2r net: the coarse to refined network for image forgery detection. In: TrustCom/BigDataSE, pp. 1656–1659. IEEE (2018)

    Google Scholar 

  30. Wu, Y., et al.: BusterNet: detecting copy-move image forgery with source/target localization. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 168–184 (2018)

    Google Scholar 

  31. Wu, Y., et al.: Mantra-net: Manipulation tracing network for detection and localization of image forgeries with anomalous features. In: Proceedings of CVPR, pp. 9543–9552 (2019)

    Google Scholar 

  32. Yi, L., Zhang, J., Zhang, R., Shi, J., Wang, G., Liu, X.: SU-Net: an efficient encoder-decoder model of federated learning for brain tumor segmentation. In: Farkaš, I., Masulli, P., Wermter, S. (eds.) Artificial Neural Networks and Machine Learning - ICANN 2020, ICANN 2020, LNCS, vol. 12396, pp 761–773. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61609-0_60

  33. Zhang, X., et al.: Reversible fragile watermarking for locating tampered blocks in jpeg images. Signal Process. 90(12), 3026–3036 (2010)

    Article  Google Scholar 

  34. Zhang, Y., et al.: Image region forgery detection: a deep learning approach. SG-CRC 2016, 1–11 (2016)

    Google Scholar 

  35. Zhang, Y., et al.: Rethinking the dice loss for deep learning lesion segmentation in medical images. J. Shanghai Jiaotong Univ. (Science) 26, 93–102 (2021)

    Article  Google Scholar 

  36. Zhang, Z., Sabuncu, M.: Generalized cross entropy loss for training deep neural networks with noisy labels. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  37. Zhu, Y.: Sothers: covert copy-move forgery detection based on color LBP. Acta Automatica Sinica 43(3), 390–397 (2017)

    Google Scholar 

  38. Zhu, Y., et al.: Hrda-net: image multiple manipulation detection and location algorithm in real scene. J. Commun. 43(1), 217–226 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, N., Shi, J., Yi, L., Wang, G., Su, M., Liu, X. (2024). APFL: Active-Passive Forgery Localization for Medical Images. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14648. Springer, Singapore. https://doi.org/10.1007/978-981-97-2238-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2238-9_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2240-2

  • Online ISBN: 978-981-97-2238-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics