Skip to main content

TFAugment: A Key Frequency-Driven Data Augmentation Method for Human Activity Recognition

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14648))

Included in the following conference series:

  • 111 Accesses

Abstract

Data augmentation enhances Human Activity Recognition (HAR) models by diversifying training data through transformations, improving their robustness. However, traditional techniques with random masking pose challenges by introducing randomness that can obscure critical information. This randomness may lead the model to learn incorrect patterns, yielding variable results across datasets and models and diminishing reliability and generalizability in real-world scenarios. To address this issue, this paper introduces Time-Frequency Augmentation (TFAugment), an adaptive method improving generalizability by selectively enhancing key frequencies across diverse datasets in HAR. The proposed method incorporates a FreqMasking module into the network to extract an importance distribution from incoming frequency channels. This distribution serves as a parameter in a Bernoulli distribution for independent sampling of each frequency channel, thereby generating enriched training data. Experiments on DSADS, MHEALTH, PAMAP2, and RealWorld-HAR datasets demonstrate TFAugment’s superior adaptability and significant performance enhancement compared to state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alawneh, L., Alsarhan, T., Al-Zinati, M., Al-Ayyoub, M., Jararweh, Y., Lu, H.: Enhancing human activity recognition using deep learning and time series augmented data. J. Ambient Intell. Humaniz. Comput. 1–16 (2021)

    Google Scholar 

  2. Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recogn. 43(10), 3605–3620 (2010)

    Article  Google Scholar 

  3. Banos, O., et al.: mHealthDroid: a novel framework for agile development of mobile health applications. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 91–98. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13105-4_14

    Chapter  Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  5. Chen, K., Zhang, D., Yao, L., Guo, B., Yu, Z., Liu, Y.: Deep learning for sensor-based human activity recognition: overview, challenges, and opportunities. ACM Comput. Surv. (CSUR) 54(4), 1–40 (2021)

    Google Scholar 

  6. Chen, S., Yang, X., Chen, Y., Yu, H., Cai, H.: Uncertainty-based fusion network for automatic skin lesion diagnosis. In: 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1487–1492. IEEE (2022)

    Google Scholar 

  7. Chen, Y., Zhong, K., Zhang, J., Sun, Q., Zhao, X.: LSTM networks for mobile human activity recognition. In: 2016 International Conference on Artificial Intelligence: Technologies and Applications, pp. 50–53. Atlantis Press (2016)

    Google Scholar 

  8. Gao, Z., Li, L., Xu, T.: Data augmentation for time-series classification: An extensive empirical study and comprehensive survey. arXiv preprint arXiv:2310.10060 (2023)

  9. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Article  Google Scholar 

  10. Iglesias, G., Talavera, E., González-Prieto, Á., Mozo, A., Gómez-Canaval, S.: Data augmentation techniques in time series domain: a survey and taxonomy. arXiv preprint arXiv:2206.13508 (2022)

  11. Jalal, A., Kim, Y.H., Kim, Y.J., Kamal, S., Kim, D.: Robust human activity recognition from depth video using spatiotemporal multi-fused features. Pattern Recogn. 61, 295–308 (2017)

    Article  Google Scholar 

  12. Jeong, C.Y., Shin, H.C., Kim, M.: Sensor-data augmentation for human activity recognition with time-warping and data masking. Multimedia Tools Appl. 80, 20991–21009 (2021)

    Article  Google Scholar 

  13. Laput, G., Harrison, C.: Sensing fine-grained hand activity with smartwatches. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–13 (2019)

    Google Scholar 

  14. Li, X., He, Y., Fioranelli, F., Jing, X.: Semisupervised human activity recognition with radar micro-doppler signatures. IEEE Trans. Geosci. Remote Sens. 60, 1–12 (2021)

    Google Scholar 

  15. Mollyn, V., Ahuja, K., Verma, D., Harrison, C., Goel, M.: Samosa: sensing activities with motion and subsampled audio. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 6(3), 1–19 (2022)

    Article  Google Scholar 

  16. Park, D.S., et al.: Specaugment: a simple data augmentation method for automatic speech recognition. arXiv preprint arXiv:1904.08779 (2019)

  17. Qian, H., Tian, T., Miao, C.: What makes good contrastive learning on small-scale wearable-based tasks? In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3761–3771 (2022)

    Google Scholar 

  18. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)

    Article  Google Scholar 

  19. Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: 2012 16th International Symposium on Wearable Computers, pp. 108–109. IEEE (2012)

    Google Scholar 

  20. Rish, I., et al.: An empirical study of the Naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, pp. 41–46 (2001)

    Google Scholar 

  21. Sztyler, T., Stuckenschmidt, H.: On-body localization of wearable devices: an investigation of position-aware activity recognition. In: 2016 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 1–9. IEEE (2016)

    Google Scholar 

  22. Wright, R.E.: Logistic regression (1995)

    Google Scholar 

  23. Xi, R., Hou, M., Fu, M., Qu, H., Liu, D.: Deep dilated convolution on multimodality time series for human activity recognition. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2018)

    Google Scholar 

  24. Yang, J., Nguyen, M.N., San, P.P., Li, X., Krishnaswamy, S.: Deep convolutional neural networks on multichannel time series for human activity recognition. In: IJCAI, Buenos Aires, Argentina, vol. 15, pp. 3995–4001 (2015)

    Google Scholar 

  25. Yao, S., Hu, S., Zhao, Y., Zhang, A., Abdelzaher, T.: Deepsense: a unified deep learning framework for time-series mobile sensing data processing. In: Proceedings of the 26th International Conference on World Wide Web, pp. 351–360 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61972055, in part by the Natural Science Foundation of Hunan Province under Grant 2021JJ30734, and in part by the Postgraduate Scientific Research Innovation Project of Hunan Province under Grant CX20220956.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfang Gong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Zeng, B., Kuang, M., Yang, X., Gong, H. (2024). TFAugment: A Key Frequency-Driven Data Augmentation Method for Human Activity Recognition. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14648. Springer, Singapore. https://doi.org/10.1007/978-981-97-2238-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2238-9_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2240-2

  • Online ISBN: 978-981-97-2238-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics